Schlussbericht
der Forschungsstelle(n)
Institut für BFSV an der HAW-Hamburg
zu dem über die

im Rahmen des Programms zur
Förderung der Industriellen Gemeinschaftsforschung und -entwicklung (IGF)
vom Bundesministerium für Wirtschaft und Technologie
aufgrund eines Beschlusses des Deutschen Bundestages
geförderten Vorhaben 16045 N

Entwicklung einer Vorschrift zur Auslegung von VCI-Wirkstoffen in Verpackungen
zum Korrosionsschutz von metallischen Produkten unter Berücksichtigung
verschiedener auftretender Randbedingungen

der AiF-Forschungsvereinigung
Deutscher Forschungsverbund Verpackungs-, Entsorgungs- und Umwelttechnik

30.06.2011
Ort, Datum

Johannes Petzoldt
Name und Unterschrift des/der Projektleiter(s)
an der/den Forschungsstelle(n)

Gefördert durch:
Bundesministerium
für Wirtschaft und Technologie
aufgrund eines Beschlusses
des Deutschen Bundestages
Inhaltsverzeichnis

Inhaltsverzeichnis

Inhaltsverzeichnis ... 1
Abbildungsverzeichnis .. 3
Tabellenverzeichnis .. 5

1	Einführung ... 8
2	IST-Zustand der VCI-Prüftechnik ... 12
2.1	TL 8135-0002, Ausgaben 1-7 ... 13
2.2	Merkblatt 51 ... 14
2.3	Technische Lieferbedingungen TL 8135-0002, Ausgabe 8 .. 15
2.4	Federal Standard 101C; method 4031 ... 16
2.5	Test der Wissenschaft, verfahren Eschke/Ewe, Institut für BFSV an der Hochschule für Angewandte Wissenschaften Hamburg ... 17
2.6	Test „Neue Verpackung“ 2/89 .. 18
2.7	Test nach BFSV .. 18
2.8	KON- und DIS-Test ... 19
2.9	Zusammenfassende Bewertung der dargestellten Prüfmöglichkeiten (Istzustand) 21
3	Zielsetzung des Vorhabens .. 22
4	Methodik der Vorgehensweise ... 23
5	Durchführung .. 24
5.1	Arbeitsschritt 2c und 3 - Anlagerungs- bzw. Akkumulationsraten 24
5.1.1	Auswahl Probenmaterial .. 24
5.1.2	Bestimmung der Art und Menge der VCI-Wirkstoffe .. 25
5.1.3	Klimatisierung der Prüfräume ... 26
5.1.4	Vorversuche zur Reinigung der Werkstoffoberflächen .. 26
5.1.5	Ermittlung der VCI-Anlagerungs- sowie der Akkumulationsraten .. 27
5.2	Arbeitsschritt 2a - Entwicklung Prüfeinrichtung .. 28
5.2.1	Anforderungen ... 29
5.2.2	Funktionsweise ... 29
5.2.3	Beurteilung von Korrosionserscheinungen .. 41
5.2.4	Validierung des Prüfaufbaus 4. Ansatz .. 44
5.3	Arbeitsschritt 1 - Prüfung der Korrosionsschutzwirkung .. 44
5.4	Arbeitsschritt 2b und 4 - Einfluss des Wirkabstandes .. 45
5.4.1	Prinzip der Prüfmethode .. 45
Abbildungsverzeichnis

Abbildung 1: Sublimationsphase ... 8
Abbildung 2: Diffusionsphase ... 8
Abbildung 3: Adsorptionsphase .. 9
Abbildung 4: Versuchsanordnung nach TL 8135-0002 13
Abbildung 5: Versuchsanordnung nach Merkblatt 51 14
Abbildung 6: Versuchsanordnung nach TL 8135-0002, Ausgabe 8 15
Abbildung 7: Versuchsanordnung nach Federal Standard 101C, Prozedur A für kristalline und flüssige VCI .. 16
Abbildung 8: Versuchsanordnung nach Federal Standard 101C, Prozedur B für VCI- Trägermaterialien ... 16
Abbildung 9: Versuchsauflauf Test der Wissenschaft 17
Abbildung 10: Versuchsauflauf Test der Neuen Verpackung 18
Abbildung 11: Versuchsauflauf Test nach BFSV .. 18
Abbildung 12: Muster KON-Test ... 19
Abbildung 13: Muster DIS-Test ... 20
Abbildung 14: Reinigung der Probe im Ultraschallbad 27
Abbildung 15: Anordnung des Aufbaus .. 28
Abbildung 16: Prüfaufbau, 1. Ansatz, Bauteile ... 30
Abbildung 17: Prüfaufbau ... 30
Abbildung 18: Prüfaufbau, 1. Ansatz .. 31
Abbildung 19: Prüfaufbau, 2. Ansatz .. 32
Abbildung 20: Prüfaufbau, 2. Ansatz Bauteile .. 32
Abbildung 21: VCI-Prüfung Einwirkdauer: 18 h 33
Abbildung 22: 0-Probe sofortige Betauung .. 33
Abbildung 23: Prüfaufbau, 3. Ansatz .. 34
Abbildung 24: Funktionsweise der Prüfeinrichtung, 3. Ansatz 36
Abbildung 25: Steuer-PC mit Steuerungs- und Überwachungskomponenten 37
Abbildung 26: Software-Oberfläche während der Prüfung (Erwärmungsphase) .. 38
Abbildung 27: Betaute Indikatoroberfläche (Stahlprobe) 38
Abbildung 28: Beispiel eines Klimaprofils .. 40
Abbildung 29: 9 Temperatursystem des Prüfaufbaus mit dem dazugehörigen Kühlssystem (Wasserkühlung) .. 40
Abbildung 30: Endgültiger Prüfaufbau, 4. Ansatz 41
Abbildung 31: Korrosionsschaubilder nach BFSV 42
Abbildung 32: Korrosionsschaubilder nach TL 8135 - 0002 42
Abbildung 33: Plan gedrehte, geschliffene und markierte Metallproben (Indikatoren) ... 46
Abbildung 34: Stapel VCI-Material .. 47
Abbildung 35: Reihe A, VCI-Prüfung .. 48
Abbildung 36: Reihe A (VCI-Prüfung) und Reihe B (Nullprobe) 48
Abbildung 37: Reihe A (VCI-Prüfung), Reihe B (Nullprobe) und Reihe C (Anlagerungsraten) ... 49
Abbildung 38: Aufbau eines einzelnen Moduls, Nullprobeanordnung (4 Indikatoren, eine davon mit Thermoelement und Petrischale mit Wasser-Glycerin-Mischung)..50
Abbildung 39: Versuchsaufbau Nullprobe mit Temperatur/Feuchte- Fühler, Thermoelement, Kamera und Prüfzylinder (Reihe B)..............................50
Abbildung 40: Anordnung des Temperatur-Feuchte-Fühlers am Deckel, siehe hierzu auch Abbildung 39 ..51
Abbildung 41: Versuchsaufbau Anlagerungsraten, 4. Ansatz ...52
Abbildung 42: Versuchsaufbau einzelnes Modul (Seitenansicht).................................53
Abbildung 43: Beispielhafte Darstellung einer Versuchsmatrix mit einer Einwirkdauer von 24 h...56
Abbildung 44: Vergleich der Methoden zur Lösung der VCI-Moleküle57
Abbildung 45: Klimaprofil Prüfeinrichtung BFSV, 4. Ansatz64
Abbildung 46: Klimaprofil TL 8135-0002..65
Abbildung 47: Schneiden der Taupunkttemperaturen mit der Führung nach 1 h79
Abbildung 48: Messung der relativen Luftfeuchte bei den Wirkabständen 15 (dunkelblau) und 60 cm (hellblau)...81
Abbildung 49: Klimaprofil Versuch 1 - 9 (Einwirkdauer 24 h).................................118
Abbildung 50: Klimaprofil Versuche 10 - 18 (Einwirkdauer 8 h)118
Abbildung 51: Klimaprofil Versuche 37 - 45 (Einwirkdauer 1 h)119
Abbildung 52: Klimaprofil Versuche 46 - 54 (Einwirkdauer 0,5 h)119
Abbildung 53: Klimaprofil Versuche 55 - 60 (Einwirkdauer 0 h)120
Abbildung 54: Klimaprofil Versuche 61 - 64 (Nullproben).................................120
Abbildung 55: Klimaprofil Versuche 1 - 6 (Einwirkdauer 24 h)121
Abbildung 56: Klimaprofil Versuche 7 - 12 (Einwirkdauer 48 h)121
Abbildung 57: Klimaprofil Versuche 1 - 6 (Einwirkdauer 24 h)122
Abbildung 58: Klimaprofil Versuche 7 - 12 (Einwirkdauer 48 h)122
Abbildung 59: Versuchsmatrix Versuche 1 - 9 (Einwirkdauer 24 h)123
Abbildung 60: Versuchsmatrix Versuche 10 - 18 (Einwirkdauer 8 h)124
Abbildung 61: Versuchsmatrix Versuche 37 - 45 (Einwirkdauer 1 h)125
Abbildung 62: Versuchsmatrix Versuche 46 - 54 (Einwirkdauer 0,5 h)126
Abbildung 63: Versuchsmatrix Versuche 1 - 6 (Einwirkdauer 24 h)127
Abbildung 64: Versuchsmatrix Versuche 7 - 12 (Einwirkdauer 48 h)128
Abbildung 65: Versuchsmatrix Versuche 1 - 6 (Einwirkdauer 24 h)129
Abbildung 66: Versuchsmatrix Versuche 7 - 12 (Einwirkdauer 48 h)130
Tabellenverzeichnis

Tabelle 1: Zusammenfassende Bewertung der dargestellten Prüfmöglichkeiten (Istzustand) ... 21
Tabelle 2: Eingesetzte VCI-Materialien ... 24
Tabelle 3: Parameter Prüfaufbau ... 30
Tabelle 4: Bewertung der Korrosionserscheinungen nach BFSV............... 43
Tabelle 5: Neu gelieferte VCI-Materialien ... 45
Tabelle 6: Untersuchungsdauer der jeweiligen VCI-Produkte 55
Tabelle 7: Wirkstoffanalyse der VCI-Folie (Herstellers 1; Material A) 58
Tabelle 8: Wirkstoffanalyse des VCI-Papiers (Hersteller 1; Material B) 58
Tabelle 9: Wirkstoffanalyse der VCI-Folie (Hersteller 2; Material C) 58
Tabelle 10: Wirkstoffanalyse der VCI-Papiers (Hersteller 2; Material D) 59
Tabelle 11: Wirkstoffanalyse der VCI-Folie (Hersteller 3; Material E) 59
Tabelle 12: Wirkstoffanalyse des VCI-Papiers (Hersteller 3; Material F) 59
Tabelle 13: Anlagerungs- bzw Akkumulationsraten VCI-Folie (Hersteller 1; Material A) ... 60
Tabelle 14: Anlagerungs- bzw Akkumulationsraten VCI-Papier (Hersteller 1; Material B) ... 60
Tabelle 15: Anlagerungs- bzw Akkumulationsraten VCI-Folie (Hersteller 2; Material C) ... 61
Tabelle 16: Anlagerungs- bzw Akkumulationsraten VCI-Papier (Hersteller 2; Material D) ... 61
Tabelle 17: Anlagerungs- bzw Akkumulationsraten VCI-Folie (Hersteller 3; Material E) ... 62
Tabelle 18: Anlagerungs- bzw Akkumulationsraten VCI-Papier (Hersteller 3; Material F) ... 62
Tabelle 19: Anlagerungs- Akkumulationsraten VCI-Papier (Hersteller 1; Material G) ... 63
Tabelle 20: Optimierung der Betauungsparameter 63
Tabelle 21: Vergleich der Methoden zur Prüfung der VCI- Korrosionsschutzwirkung* ... 64
Tabelle 22: Ergebnisse der Prüfung der Korrosionsschutzwirkung der VCI- Materialien ... 66
Tabelle 23: Wirkstoffanalyse des VCI-Papiers G während Versuchsreihe 1 67
Tabelle 24: Beginn der ersten Korrosionserscheinungen (Versuchsreihe 1)* 68
Tabelle 25: Anlagerungs- an den Metallproben in Versuchsreihe 1 71
Tabelle 26: Wirkstoffanalyse des VCI-Papiers J während Versuchsreihe 2 72
Tabelle 27: Beginn der ersten Korrosionserscheinungen (Versuchsreihe 2)* 72
Tabelle 28: Anlagerungs- an den Metallproben in Versuchsreihe 2 74
Tabelle 29: Wirkstoffanalyse des VCI-Papiers C während der Versuchsreihe 3 74
Tabelle 30: Beginn der ersten Korrosionserscheinungen (Versuchsreihe 3)* 75
Tabelle 31: Drei Nullproben je Wirkabstand (Einwirkdauer 8 h) 80
Tabelle 32: Dokumentierte Metallproben aus den Vorversuchen in Kapitel 5.2.4 88
Tabelle 33: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 1 und 4 (Einwirkdauer 24 h; Wirkabstand: 15 cm) 89
Tabelle 34: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 2 und 5 (Einwirkdauer 24 h; Wirkabstand: 30 cm) ..90
Tabelle 35: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 3 und 6 (Einwirkdauer 24 h; Wirkabstand: 60 cm) ..91
Tabelle 36: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 10 und 13 (Einwirkdauer 8 h; Wirkabstand: 15 cm) ..92
Tabelle 37: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 11 und 14 (Einwirkdauer 8 h; Wirkabstand: 30 cm) ..93
Tabelle 38: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 12 und 15 (Einwirkdauer 8 h; Wirkabstand: 60 cm) ..94
Tabelle 39: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 37 und 40 (Einwirkdauer 1 h; Wirkabstand: 15 cm) ..95
Tabelle 40: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 38 und 41 (Einwirkdauer 1 h; Wirkabstand: 30 cm) ..96
Tabelle 41: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 39 und 42 (Einwirkdauer 1 h; Wirkabstand: 60 cm) ..97
Tabelle 42: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 46 und 49 (Einwirkdauer 0,5 h; Wirkabstand: 15 cm) ..98
Tabelle 43: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 47 und 50 (Einwirkdauer 0,5 h; Wirkabstand: 30 cm) ..99
Tabelle 44: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 48 und 51 (Einwirkdauer 0,5 h; Wirkabstand: 60 cm) ..100
Tabelle 45: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 55 und 58 (Einwirkdauer 0 h; Wirkabstand: 15 cm) ..101
Tabelle 46: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 56 und 59 (Einwirkdauer 0 h; Wirkabstand: 30 cm) ..102
Tabelle 47: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 57 und 60 (Einwirkdauer 0 h; Wirkabstand: 60 cm) ..103
Tabelle 48: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 61 und 62 (Wirkabstand: 15 cm) ...104
Tabelle 49: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 63 (Wirkabstand: 30 cm) und 64 (Wirkabstand: 60 cm) ..105
Tabelle 50: Dokumentation der Metallproben aus Versuchsreihe 2; Versuche 1 und 4 (Einwirkdauer 24 h; Wirkabstand: 15 cm) ..106
Tabelle 51: Dokumentation der Metallproben aus Versuchsreihe 2; Versuche 2 und 5 (Einwirkdauer 24 h; Wirkabstand: 15 cm) ..107
Tabelle 52: Dokumentation der Metallproben aus Versuchsreihe 2; Versuche 3 und 6 (Einwirkdauer 24 h; Wirkabstand: 60 cm) ..108
Tabelle 53: Dokumentation der Metallproben aus Versuchsreihe 2; Versuche 7 und 10 (Einwirkdauer 48 h; Wirkabstand: 15 cm) ..109
Tabelle 54: Dokumentation der Metallproben aus Versuchsreihe 2; Versuche 8 und 11 (Einwirkdauer 48 h; Wirkabstand: 30 cm) ..110
Tabelle 55: Dokumentation der Metallproben aus Versuchsreihe 2; Versuche 9 und 12 (Einwirkdauer 48 h; Wirkabstand: 60 cm) ..111
Tabelle 56: Dokumentation der Metallproben aus Versuchsreihe 3; Versuche 1 und 4 (Einwirkdauer 24 h; Wirkabstand: 15 cm) ..112
Tabelle 57: Dokumentation der Metallproben aus Versuchsreihe 3; Versuche 2 und 5 (Einwirkdauer 24 h; Wirkabstand: 30 cm) ..113
Tabelle 58: Dokumentation der Metallproben aus Versuchsreihe 3; Versuche 3 und 6 (Einwirkdauer 24 h; Wirkabstand: 60 cm)114
Tabelle 59: Dokumentation der Metallproben aus Versuchsreihe 3; Versuche 7 und 10 (Einwirkdauer 48 h; Wirkabstand: 15 cm)115
Tabelle 60: Dokumentation der Metallproben aus Versuchsreihe 3; Versuche 8 und 11 (Einwirkdauer 48 h; Wirkabstand: 30 cm)116
Tabelle 61: Dokumentation der Metallproben aus Versuchsreihe 3; Versuche 9 und 12 (Einwirkdauer 48 h; Wirkabstand: 60 cm)117
1 Einführung

Im Bereich des temporären Korrosionsschutzes für den Versand von technischen Packgütern hat sich die VCI-Methode erfolgreich am Markt etabliert. (1; 2) Seite 15

VCI-Moleküle sublimieren bei Raumtemperatur aus Trägermaterialien in den Verpackungsraum. Sie gehen vom festen direkt in den gasförmigen Zustand über, ohne sich vorher zu verflüssigen. Die VCI’s diffundieren in den Verpackungsraum, bilden an der Metalloberfläche eine dichte Adsorptionsschicht und verschließen bei Bedarf entstandene Lücken in der POS.

Die drei Phasen zur Erstellung eines Korrosionsschutzes sind in den nächsten Abbildungen erläutert. (3)

Abbildung 1: Sublimationsphase

Abbildung 2: Diffusionsphase
stoffoberflächen und deren Materialart im geschlossenen Schutzraum, dessen Volumen und der räumlichen Zuordnung (Abstand) der zu schützenden Oberflächen zum VCI-Spender.

Die VCI’s, die das Luftvolumen innerhalb des Packraumes sättigen und sich an den Packstoffoberflächen anlagern, stehen dann für den Korrosionsschutz der Packgutoberflächen nicht mehr zur Verfügung.

Aus dieser Tatsache heraus resultiert die Forderung, das VCI-Angebot je nach Art und Größe der wahren Packstoffoberflächen also deren geometrische Flächen und Oberflächenbeschaffenheiten, im freien Packraumvolumen, zu erhöhen. Die Packstoffe in Packstückräumen sind häufig ABS und PP als Trays, eingeschränkt Hölzer mit unterschiedlichen Materialfeuchten, sowie VCI-freie PE-LD Folien als Hüllen, die oft in Kombination mit VCI-Papier eingesetzt werden.

Bisher existieren hierfür noch keine bzw. keine einheitlichen Vorgaben. Erste Anhaltswerte für VCI-Anlagerungen an Packstoffen wurden im Rahmen des Vorgängerprojektes AIF Nr. 14115 N ermittelt und konnten sich aber nur auf die Materialien der Versuchseinrichtung beziehen. (4)

Zurzeit gibt es noch keine systematischen Untersuchungen in Bezug auf Anlagerungsraten an Packstoffen bei Verwendung diverser gängiger VCI-Korrosionsschutzmittel des Marktes.

zu schützenden Packgutoberflächen von max. 30 cm ist den Ursprung betreffend nicht nachzuvollziehen. Oft kann dieser maximale Abstand bei technischen Packgütern mit kompliziert gestalteten Oberflächen oder überragenden Bauteilen nicht eingehalten werden. Hier sind für die Ausgestaltung von VCI-Verpackungssystemen allgemeingültige Ausführungshinweise zu entwickeln, die durch wissenschaftliche Untersuchungen validiert und belegt sind.

Ein Beispiel aus der Verpackungspraxis für technische Packgüter zeigt deutlich, mit welchen Unsicherheiten gearbeitet wird. Es werden z.B. technische Packgüter (Maschinen/Anlagen) ausschließlich in VCI-Folienhüllen verpackt und konserviert. Bedenkt man, dass der VCI-Anteil in Folien ca. 10% von dem beträgt, was in anderen flächigen Trägermaterialen vorhanden ist, wie z.B. Papier, und die Verdampfungskinetik aus den Folien heraus noch wesentlich geringer ist, so ist eine solche Schutzmaßnahme auch vor dem Hintergrund der vorher gemachten Betrachtungen fragwürdig. Erfahrungen der Forschungsstelle mit der gutachterlichen Bearbeitung von Korrosionsschäden belegen dieses.

Es ist weiterhin festzustellen, dass die VCI-Korrosionsschutzmittel nicht wie die Trockenmittel bezüglich ihrer Wirkweise - hier Trockenmitteleinheiten nach DIN 55473 - in sog. Liefergrößen objektiv spezifiziert sind, für die in Bezug auf ihre Liefergrößen physikalische Mindestanforderungen bestehen.
2 IST-Zustand der VCI-Prüftechnik

Sämtliche bisher zur Verfügung stehenden Beurteilungen bezüglich der Eignungs-
nachweise von VCI-Mitteln beruhen auf Prüfverfahren, die teilweise genormt, bzw.
aufgrund von Anforderungen, die durch die Normprüfungen nicht erfüllt wurden,
modifiziert und erweitert wurden. Diese Prüfverfahren, insbesondere die genormten,
sind was die Möglichkeiten der Prüfung von verschiedenen Applikationen von VCI-
Mitteln anbetrifft, nur bedingt oder überhaupt nicht geeignet, um belastbare Aussa-
gen über die Prozesssicherheit zu machen. Sie beziehen sich auf die klassischen
Applikationen wie VCI-Papier und aufgrund der Produktähnlichkeit auch auf VCI-
Folien. Für pulverförmige VCI-Applikationen und Schaumstoffe werden in Testver-
fahren nur Stahlwerkstoffe als Indikatoren benutzt, eine Überprüfung multifunktionel-
ler VCI-Produkte mit Werkstoffkombinationen ist nicht möglich, allen falls durch ein
modifiziertes Prüfverfahren, das durch die Forschungsstelle entwickelt wurde. Die
Auswertung der Ergebnisse ist hierbei aufgrund eingeschränkter Reproduzierbarkeit
und subjektiver Beurteilung nicht optimal und objektiv.

Bei den z.Z. praktizierten Prüfverfahren handelt es sich um:

- Technische Lieferbedingungen nach TL 8135-0002, Ausgaben 1-7
- Merkblatt 51
- Technische Lieferbedingungen TL 8135-0002, Ausgabe 8
- Federal Standard 101C; Method 4031
- Test der Wissenschaft, Verfahren Eschke/Ewe, Institut für BFSV an der
 Hochschule für Angewandte Wissenschaften Hamburg
- Eschke Test
- Test „Neue Verpackung“ 2/89
- DIS und KON-Test nach dem VW-Verfahren
2.1 TL 8135-0002, Ausgaben 1-7

Versuchsaufbau:

Abbildung 4: Versuchsanordnung nach TL 8135-0002

In der Ausgabe 2 der TL wurde der Versuchsaufbau beschrieben und skizziert. In den folgenden Ausgaben blieb der Test zur Überprüfung der Schutzwirkung bis zur Ausgabe Nr. 6 im Jahre 1988 im Prinzip unverändert. In dieser Ausgabe wurde der Test durch einen Neuen im Merkblatt 51 der Verpackungs-Rundschau von dem Wehrwissenschaftlichen Institut für Materialuntersuchungen (WIM) und dem Fraunhofer Institut beschriebenen Test ersetzt; dieses auch auf der Basis einer Untersuchung der ausführenden Forschungsstelle. In der Ausgabe 7 der Norm wurden beide Tests parallel als Nachweismethode der Schutzwirkung von VCI’s zugelassen.
2.2 Merkblatt 51

Versuchsaufbau:

Abbildung 5: Versuchsanordnung nach Merkblatt 51

2.3 Technische Lieferbedingungen TL 8135-0002, Ausgabe 8

2.4 Federal Standard 101C; method 4031

Abbildung 7: Versuchsanordnung nach Federal Standard 101C, Prozedur A für kristalline und flüssige VCI

Abbildung 8: Versuchsanordnung nach Federal Standard 101C, Prozedur B für VCI-Trägermaterialien

2.5 Test der Wissenschaft, verfahren Eschke/Ewe, Institut für BFSV an der Hochschule für Angewandte Wissenschaften Hamburg

Abbildung 9: Versuchsaufbau Test der Wissenschaft

Die atmosphärische Korrosion wurde entweder durch eine hohe Luftfeuchte in der Prüfatmosphäre oder durch ein Wechselklima stimuliert.
2.6 Test „Neue Verpackung“ 2/89

2.7 Test nach BFSV

Nachweis der Korrosionsschutzwirkung von VCI-Folien an unterschiedlichen Metallen bzw. Legierungen.
Das Testverfahren erstreckt sich auf die Prüfung der VCI-Schutzwirkung in Verbin-
dung mit verschiedenen Metallen. Diese Metalle sind nicht elektrisch leitend mitei-
nander verbunden. Die Form der Wasserbeigabe im Testaufbau simuliert die Aus-
wirkung von hygroskopischem Beipack auf die Prüfatmosphäre. Hierdurch ist ein
hoher Praxisbezug gegeben. Auch durch die Verwendung von Folie als Hüllenmate-
rial wird die Praxis abgebildet. Diese Methode eignet sich besonders zur Prüfung
von VCI-Folien, aus denen dann die Hülle bestehen kann. Nachteilig an dem Test-
verfahren ist der erforderliche Einsatz einer Temperaturkammer, um die erforderli-
chen Temperaturwechsel zu erzeugen.

2.8 KON- und DIS-Test

Bei diesen Prüfungen werden Prüfbleche in Modellverpackungen gepackt und ei-
nem Wechselklima in Anlehnung an DIN EN 60068-2-30 ausgesetzt. Hierbei setzt
sich der Schutzbeitrag aus den VCI-Wirkstoffen und der Wasserdampfdurchlässig-
keit zusammen. Ein Zyklus dauert 24 h. Dieser läuft wie folgt ab:

Startpunkt: 25°C / 95% RF
3 Stunden Aufheizen von 25 °C auf 55 °C bei 95 % RF
9 Stunden 55 °C bei 95 % RF
3 Stunden Abkühlen von 55 °C auf 25 °C bei 95 % RF
9 Stunden 25 °C bei 95 % RF

Beim KON-Test werden die Prüfbleche so verpackt, dass die Folie die Blechoberflä-
che intensiv berührt.

Abbildung 12: Muster KON-Test
Beim DIS-Test werden Prüfbleche in einen Distanzrahmen gesteckt, so dass die VCI-Wirkstoffe über die Gasphase wirken müssen.

Abbildung 13: Muster DIS-Test

Aus der Zahl der Klimazyklen bis zum Auftreten definierter Korrosionserscheinungen an den Prüfblechen wird der Korrosionsschutzeffekt des VCI-Verpackungsmittels im Vergleich zum VCI-freien Referenzmaterial bewertet. Als Ergebnis erhält man einen Faktor. (11)
2.9 Zusammenfassende Bewertung der dargestellten Prüfmöglichkeiten (Istzustand)

Tabelle 1: Zusammenfassende Bewertung der dargestellten Prüfmöglichkeiten (Istzustand)

<table>
<thead>
<tr>
<th>Test</th>
<th>Aussagekraft</th>
<th>Reproduzierbarkeit der Ergebnisse</th>
<th>Prüfaufwand</th>
<th>Prüfdauer</th>
<th>Schutzwirkung</th>
<th>Korrosive Belastung</th>
<th>VCI Applikation</th>
<th>Indikator</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL 8135-0002</td>
<td>gering</td>
<td>schlecht</td>
<td>hoch</td>
<td>4 Tage</td>
<td>Kontakt Dampf</td>
<td>2x massive Betauung + NaCl</td>
<td>Papier</td>
<td>Stahl</td>
</tr>
<tr>
<td>Ausgabe 1-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merkblatt 51</td>
<td>mittel</td>
<td>mittel</td>
<td>gering</td>
<td>1 Tag</td>
<td>Dampf</td>
<td>plötzliche massive Betauung</td>
<td>Papier Folie</td>
<td>Stahl</td>
</tr>
<tr>
<td>TL 8135-0002</td>
<td>hoch</td>
<td>gut</td>
<td>gering</td>
<td>1 Tag</td>
<td>Dampf</td>
<td>Massive Betauung</td>
<td>Papier Folie</td>
<td>Stahl</td>
</tr>
<tr>
<td>Ausgabe 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fed. Test 101C</td>
<td>mittel</td>
<td>mittel</td>
<td>mittel</td>
<td>1 Tag</td>
<td>Dampf</td>
<td>plötzliche massive Betauung</td>
<td>Papier Folie Pulver Flüssigkeit</td>
<td>Vorw. Stahl auch andere</td>
</tr>
<tr>
<td>Test der Wissenschaft</td>
<td>mittel</td>
<td>mittel</td>
<td>gering</td>
<td>1 Tag</td>
<td>Dampf</td>
<td>plötzliche massive Betauung</td>
<td>Pulver</td>
<td>Diverse Metalle</td>
</tr>
<tr>
<td>Neue Verpackung 2/89</td>
<td>mittel</td>
<td>schlecht</td>
<td>mittel</td>
<td>3 Tage</td>
<td>Dampf</td>
<td>plötzliche massive Betauung</td>
<td>Papier Pulver</td>
<td>Diverse Metalle</td>
</tr>
<tr>
<td>Test nach BFSV</td>
<td>hoch</td>
<td>gut</td>
<td>hoch</td>
<td>5 Tage</td>
<td>Dampf</td>
<td>Betauung</td>
<td>Folie</td>
<td>Diverse Metalle</td>
</tr>
<tr>
<td>KON- und DIS-Test</td>
<td>Hoch</td>
<td>Gut</td>
<td>Hoch</td>
<td>Bis 30 Tage</td>
<td>Kontakt Dampf</td>
<td>Betauung</td>
<td>Folie, Papier</td>
<td>Blech</td>
</tr>
</tbody>
</table>
3 Zielsetzung des Vorhabens

Ziel des Vorhabens ist es, allgemein gültige Vorgaben zu erarbeiten, die es dem Anwender ermöglichen, anhand von Katalogen und/oder empirischen Formeln VCI-Verpackungssysteme in technischer und wirtschaftlicher Hinsicht optimal auszulegen und so wirtschaftlich bedeutsame Schäden durch Korrosionsvorgänge bei Unterdimensionierungen der Systeme sowie wirtschaftliche Schäden durch Überdimensionierungen zu vermeiden. Angestrebt wird eine Vorschrift für die VCI-Methode, analog der Methode zur Berechnung der erforderlichen Trockenmittelmengen in einer Verpackung gemäß DIN 55474 für die Trockenmittelmethode, um die Prozesssicherheit der VCI-Methode zu erhöhen und die Dokumentation der Auslegung dieser Methode für den Anwender zu ermöglichen.

Folgende Forschungsergebnisse werden angestrebt:

- **wissenschaftlich-technische Ergebnisse**
 Die angestrebten Forschungsergebnisse sollen Aufschluss darüber geben in welchen Umfang bei der VCI Methode die für den Korrosionsschutz erforderliche Menge VCI eingesetzt werden muss, dies unter den Voraussetzungen der Anlagerungsraten von VCI’s an Packstoffen unterschiedlicher Art, deren spezifische Oberflächenzustände sowie der Wirkradien der VCI-Mittel.

- **wirtschaftliche Ergebnisse**

- **Innovativer Beitrag der angestrebten Forschungsergebnisse zur Weiterentwicklung eines Verfahrens**
4 Methodik der Vorgehensweise

Die Art der Vorgehensweise zur Erreichung der im vorigen Kapitel dargestellten Zielsetzung wird in diesem Kapitel erläutert.

Um eine Berechenbarkeit des gesamten VCI-Korrosionsschutzsystems zu erreichen, werden daher an verschiedenen Werkstoffen gängiger Packstoffe sowie Packgütern Anlagerungsraten von VCI-Wirkstoffen bestimmt. Verbunden mit der Analyse der VCI-Produkte können so Vergleiche zwischen der angebotenen und der benötigten Wirkstoffmenge erstellt werden. Weiterhin können Versuche zum Einfluss des Wirkradius der VCI-Produkte mithilfe der Anlagerungsraten durchgeführt werden. Versuche mit einem bestimmten Wirkabstand (d.h. Abstand des VCI-Trägers zur Metallocberfläche) und einer definierten Einwirkdauer (Zeit von der Applikation des VCI-Materials bis zum Beginn der Betauung also der korrosiven Belastung) werden so lange durchgeführt, bis diese Anlagerungsmenge erreicht ist. So können Aussagen getroffen werden, wie diese Variablen den Aufbau eines VCI-Korrosionsschutzes beeinflussen.

Die hierbei ermittelten Erkenntnisse können dann in ein Berechnungsmodell für VCI-Produkte einfließen und die Anwendung von VCI-Produkten sicherer und somit wirtschaftlicher machen. Im besten Fall kann diese Methode der Berechnung von Trockenmitteln gleichgestellt werden und somit ein bedeutender Kritikpunkt der VCI-Methode ausgeräumt werden.
5 Durchführung

Die Durchführung der einzelnen Arbeitsschritte ist in diesem Kapitel erläutert. Die Reihenfolge dieser Schritte entspricht nicht der im Antrag genannten, da diese aufgrund nicht vorhergesehenen Teilergebnissen teilweise abgeändert und entsprechend angepasst werden mussten.

5.1 Arbeitsschritt 2c und 3 - Anlagerungs- bzw. Akkumulationsraten

5.1.1 Auswahl Probenmaterial

5.1.1.1 VCI-Probenmaterial

Als Probenmaterial wurden von drei Herstellern je eine Folie sowie ein Papier zur Verfügung gestellt. Die Produkt- sowie Herstellerbezeichnungen wurden anonymisiert.

Tabelle 2: Eingesetzte VCI-Materialien

<table>
<thead>
<tr>
<th>Hersteller</th>
<th>Produktbezeichnung</th>
<th>Trägermaterial</th>
<th>Eigenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A Papier</td>
<td>Multimetall, beidseitig wirksam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 B Folie</td>
<td>Multimetall, beidseitig wirksam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 C Papier</td>
<td>Multimetall, einseitig wirksam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 D Folie</td>
<td>Multimetall, einseitig wirksam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 E Papier</td>
<td>Multimetall, einseitig wirksam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 F Folie</td>
<td>Multimetall, einseitig wirksam</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.1.1.2 Packgutbezogene Werkstoffproben

Um die Ergebnisse dieser Arbeit für möglichst breite Anwendergruppen nutzbar zu machen, werden bei dieser Untersuchung vier unterschiedliche metallische Indikatoren eingesetzt, Kupfer (Cu), Messing (MS), Stahl (CK45) und Aluminium (AlCuMgPb). Diese stellen einen kleinen repräsentativen Ausschnitt aus den im Anlagen- und Maschinenbau verwendeten metallischen Werkstoffen dar.

Kupfer ist elektrisch leitend und wird häufig in Präzisionsteilen, Schaltkreisen und Transformatoren verbaut. Die Kupferlegierung Messing besitzt gute korrosionschemische Eigenschaften und eine hohe mechanische Stabilität. Der Hauptwerkstoff Stahl wiederum kommt bei fast allen Anlagen vor. Aluminium wird wegen seiner geringen Dichte bevorzugt im Automobilbau eingesetzt.

Die Auswahl der Indikatoren spiegelt die Praxis in der Form, dass technische Produkte aus verschiedenen Metallen bestehen. Die Indikatoren sind Ronden mit den Abmessungen d = 50 und h = 5 mm. Die Oberflächen sind feinst geschlichtet.

5.1.1.3 Packmittelbezogene Werkstoffe

Die Ronden haben wiederum die Abmessungen d = 50 und h = 5 mm und die Oberflächen der Kunststoffproben sind feinst abgedreht.

Der Werkstoff Holz wird, wie im Forschungsantrag erwähnt, nicht verwendet, da hierfür keine definierten Oberflächenrauigkeiten erstellt werden können. Darüber hinaus kann Holz korrosionsfördernd wirken und wird daher in der Praxis selten innerhalb einer VCI-Korrosionsschutzverpackung eingesetzt.

5.1.2 Bestimmung der Art und Menge der VCI-Wirkstoffe

Um die Wirkstoffart und -menge in einem VCI-Produkt zu bestimmen, wird ein Muster des VCI-Papiers auf seine Inhaltsstoffe hin untersucht.

Die Analyse wird in zeitlichen Abständen von sechs Monaten wiederholt. Damit wird der Nachweis erbracht werden, dass die Lagerbedingungen (VCI-Produkt in Aluminiumverbundbeutel) zu keinem Rückgang der Konzentration aufgrund vorzeitiger Ausdampfens oder Veränderung der VCI-Wirkstoffe führen.

Für die Analyse werden Muster mit einer Masse von 1,5 g gezogen. Das entspricht einer Fläche des VCI-Papiers von 272 cm². Die Muster werden nach dem Zerkleinern

5.1.3 Klimatisierung der Prüfräume

Das Mischungsverhältnis von Wasser-Glycerin-Mischungen für eine relative Luftfeuchtigkeit bei 23°C von 70 % rL beträgt 64 % Glycerin (nach Masse) und von 50 % rL 81 % Glycerin. (16)

5.1.4 Vorversuche zur Reinigung der Werkstoffoberflächen

Bei der zweiten Methode, der Spülmethode werden die Proben mit 10 ml Methanol gespült. Die Lösung wird aufgefangen.

5.1.5 Ermittlung der VCI-Anlagerungs- sowie der Akkumulationsraten

Um die Anlagerungsraten der VCI-Moleküle zu ermitteln, werden die Indikatoren (siehe Kapitel 5.1.1) unter den klimatischen Bedingungen von 23°C/70% rH in einem luftdichten Behälter, ausgekleidet und überdimensioniert mit VCI-Materialien, gelagert. Die Anlagerungsraten stellen den Endpunkt der Versuche zur Ermittlung der Aufbauzeit dar, da davon ausgegangen wird, dass diese maximalen Anlagerungsraten auch der Menge VCI-Wirkstoffen entspricht, bei der ein Korrosionsschutz als aufgebaut betrachtet werden kann.

Um diese maximalen Anlagerungsraten zu bestimmen, wird wie folgt vorgegangen. In einer luftdicht verschlossenen Box werden die Wände nahezu vollständig mit dem VCI-Material ausgekleidet. Je zwei Indikatoren werden so in der Box platziert, dass diese von allen Seiten zugänglich für die VCI-Moleküle sind. Zur Erzeugung der relativen Luftfeuchtigkeit bei 23°C von 70 % werden 10 ml einer Wasser-Glycerin-Mischung
Durchführung 28

(siehe Kapitel 5.1.3) in eine Petrischale eingefüllt. Die Schale wird in die Box gestellt. Die Einwirkzeit beträgt für VCI-Papiere 12 Tage und für VCI-Folien 22 Tage. Die Fläche des VCI-Materials in der Box beträgt 830 cm². Aufgrund der langen Lagerzeit und der hohen VCI-Menge kann davon ausgegangen werden, dass eine Überdimensionierung beider Randbedingungen gegeben ist. Somit ist sicherzustellen, dass eine maximale Anlagerungsmenge ermittelt wird. Das Volumen der Box beträgt 2000 cm³ und die Fläche der Innenwand 958 cm². Die Box besteht aus PP. Die gesamte Oberfläche eines Indikators (Ronde) umfasst 45 cm².

Diese Versuche werden mit allen Werkstoffen, die in Kapitel 5.1.1 aufgeführt sind, durchgeführt. Weiterhin wird, wie eben beschrieben, eine weitere Box ohne Indikatoren bereitgestellt. Diese enthält nur die zur Klimatisierung benötigte Wasser-Glycerin-Mischung. Damit kann die Wirkstoffmenge ermittelt werden, die dem Prüfsystem aufgrund der Akkumulation der VCI-Wirkstoffe in der Wasser-Glycerin-Mischung entzogen wird.

Nach Abschluss der Lagerzeit werden die Boxen geöffnet und die Indikatoren zeitnah mit dem in Kapitel 5.1.4 beschriebenen Verfahren (Ultraschallmethode) gereinigt und die Methanollösungen analysiert.

Abbildung 15: Anordnung des Aufbaus

5.2 Arbeitsschritt 2a - Entwicklung Prüfeinrichtung

In diesem Arbeitsschritt wird ein Versuchsaufbau entwickelt, um den Einfluss des Wirkabstandes, d.h. der Abstand vom VCI-Träger zur Metalloberfläche, zu ermitteln.
So kann der Wirkradius verschiedener VCI-Produkte geprüft werden. Diese Versuchs-
ergebnisse stellen eine wichtige Information für den Anwender dar, um VCI-
Korrosionsschutzsysteme auszulegen.

5.2.1 Anforderungen

Die Ergebnisse der Versuche müssen aussagekräftig und reproduzierbar sein. Um
eine einfache Handhabung zu gewährleisten und um potentielle Fehlerquellen im Vo-
raus auszuschließen, sollte der Prüfstand in der Anwendung möglichst einfach konstru-
iert werden. Die Änderung einzelner Parameter, wie Wirkabstand und Leervolumen,
muss unkompliziert möglich sein. Das Prüfklima sollte leicht und genau einstellbar sein.
Um den Beginn des Versuchs exakt einzutragen, muss der VCI-Träger so eingesetzt
werden, dass die Sublimation der Moleküle erst einsetzt, wenn sich die Probe bereits
im Prüfstand befindet. Ein zu frühes Ausdampfen und Anlagern der Moleküle z.B. an
der Innenwand des Prüfstandes muss unbedingt vermieden werden, um eine Verzer-
rung des Ergebnisses zu vermeiden. Die angebotene Wirkstoffmenge muss ausrei-
chend sein. Optimaler Weise lassen sich unterschiedliche Werkstoffe in den Prüfauf-
bau einsetzen, um eine große Bandbreite verschiedener im Anlagen- und Maschinen-
bau eingesetzter Materialien prüfen zu können. Um eine Verfälschung der Ergebnisse
durch in vorherigen Versuchen eingebrachte VCI-Moleküle zu vermeiden, müssen die
Bauteile des Versuchsaufbaus leicht zu reinigen sein.

5.2.2 Funktionsweise

Die VCI-Moleküle sublimieren aus einem Trägermaterial, diffundieren in die Luft und
lagern sich an alle Oberflächen im Prüfraum an. Der Endpunkt der Aufbauphase kann
durch einen Indikator bestimmt werden. Die Zeit zum Aufbau der Korrosionsschutz-
schicht unter dem Einfluss der Randbedingungen Wirkabstand und Leervolumen kann
damit untersucht werden. Die relative Luftfeuchtigkeit kann individuell eingestellt wer-
den.

5.2.2.1 Prüfaufbau, 1. Ansatz

Dieser Vorgehensweise liegt die Annahme zugrunde, dass der Korrosionsschutz ge-
gaben ist, wenn die Packgutoberfläche mit der maximal möglichen Menge VCI-
Molekülen belegt ist. Die Bestimmung der maximalen Anlagerungsraten sind in Kapitel
5.1.5 dargestellt. Durch die Bestimmung der Anlagerungsrate in mehreren Zeitschritten
bis zur, in Kapitel 5.1 ermittelten maximalen Anlagerungsmenge kann die Zeit zum
Aufbau des Korrosionsschutzes bestimmt werden. Der Indikator wird nach definierten
Zeitschritten analysiert. Zu dem Zeitpunkt, zu dem die maximale Anlagerungsmenge

Tabelle 3: Parameter Prüfaufbau

<table>
<thead>
<tr>
<th>Abstand VCI-Träger zu Metallprobe in cm</th>
<th>Leervolumen in cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 20 30 40</td>
<td>1000 2000</td>
</tr>
<tr>
<td>- 20 - 40</td>
<td></td>
</tr>
</tbody>
</table>

![Abbildung 16: Prüfaufbau, 1. Ansatz, Bauteile](image1)

![Abbildung 17: Prüfaufbau](image2)
Die ersten Vorversuche werden aufgrund der ermittelten hohen Anlagerungsraten mit einem Indikator aus ABS durchgeführt. Jeweils nach 5, 15, 30, 45 und 90 min werden die Proben aus dem Prüfaufbau genommen und mit der in Kapitel 4.2 beschriebenen Ultraschallmethode gereinigt. Der Wirkabstand beträgt 20 cm, das Leervolumen 2000 cm³, die Fläche VCI-Material 100 cm² und das Prüfklima 23°C / 70 % rL. Da bei den untersuchten Einwirkzeiten keine messtechnisch nachweisbaren Anlagerungen festgestellt werden konnten, werden bei gleichen Versuchsparametern größere Zeitschritte gewählt, 3, 6 und 18 h. Auch bei diesen Einwirkzeiten können keine VCI-Anlagerungsraten messtechnisch nachgewiesen werden. Die anlagerungsraten lagen unter der Nachweigrenze der verwendeten Messverfahren.

5.2.2.2 Prüfaufbau, 2. Ansatz (Modifizierung)

Abbildung 19: Prüfaufbau, 2. Ansatz

Abbildung 20: Prüfaufbau, 2. Ansatz Bauteile

Abbildung 21: VCI-Prüfung
Abbildung 22: 0-Probe

Einwirkdauer: 18 h
sofortige Betauung
5.2.2.3 Prüfaufbau, 3. Ansatz

Abbildung 23: Prüfaufbau, 3. Ansatz
Das Klima im Prüfraum von 70 % rL wird wiederum mit einer Wasser-Glycerin-Mischung eingestellt. Die Lösung befindet sich in einem Reagenzglas, die Feuchtigkeit wird mit einem Docht, bestehend aus einem Textilmaterial, an die Atmosphäre im Prüfraum abgegeben.

Mit Hilfe der Thermoelemente wird die Temperatur der Indikatoroberfläche (Stahl) ermittelt. Gleichzeitig erfasst der Temperatur-Feuchte-Sensor die Raumtemperatur innerhalb des Prüfraums und die Software errechnet daraus die Taupunkttemperatur. Bei Temperaturunterschieden zwischen Soll- und Ist-Wert wird ein Signal an den Leistungsverstärker gesendet und somit entsprechend der Differenz die Temperatur an der Metalloberfläche nachgeregelt. In dem folgenden Bild ist die Funktionsweise der Prüfeinrichtung beschrieben.
Abbildung 24: Funktionsweise der Prüfeinrichtung, 3. Ansatz
Steuerungs- und Überwachungskomponenten:

- Thermoelement Typ K (Thermopaar aus Nickel-Chrom / Nickel-Aluminium)
 Temperaturbereich: -75°C – +250°C, verschweißte Messspitze
- Temperatur-Feuchte-Fühler, Messspanne: -40°C – +85°C; 0 % rL – 100 % rL
- Peltierelement Kühlblock PKE, Firma Peltron GmbH, max. Kälteleistung 45 W, max. Temperaturdifferenz 66 K
- Messdatenerfassungskarte DT302 (PCI-Einsteckkarte), Firma Data Translation, Auflösung 12 Bit
- Signalanschlußbox, Firma IED
- Leistungsverstärker DCS 40-25E, Firma Sörensen, Leistung 1000 W, regelbare Ausgangsspannung
- Messsystem MGCplus, Firma Hottinger, Auflösung 24 Bit
- Software DIAdem® Version 8.1, Firma National Instruments
- Handelsüblicher PC

Abbildung 25: Steuer-PC mit Steuerungs- und Überwachungskomponenten
Abbildung 26: Software-Oberfläche während der Prüfung (Erwärmungsphase)

In der oberen Abbildung ist die Softwareanzeige während der Endphase der Prüfung abgebildet. Zelle 1 und 2 stellen jeweils die Thermoelemente im Prüfraum dar. Aufgrund der Erwärmung der Kupferplatte ist deutlich zu sehen, dass Zelle 1, auf der Höhe der Indikatoren angebracht, eine höhere Temperatur aufweist als Zelle 2. Die Feuchtigkeit aus der Luft setzt sich während der Abkühlung unter Taupunkt als Kondensat auf der Indikatoroberfläche ab (siehe Abbildung 27).

Abbildung 27: Betaute Indikatoroberfläche (Stahlprobe)
Durchführung

5.2.2.4 Prüfaufbau, 4. Ansatz

Das bestehende Prinzip des Prüfaufbaus wird im vierten Ansatz weiter optimiert. Um die auftretende Betauung an Metallindikatoren (Ronden) bildlich zu dokumentieren, werden statt der Prüfzylinder aus PP Zylinder aus PMMA (Plexiglas) verwendet. Die bildliche Dokumentation geschieht über Kamerasysteme, die außerhalb der Prüfzylinder installiert werden.

Da kein klimatisierter Raum zur Verfügung stand, musste allein mit der Wasser-Glycerin-Mischung die relative Luftfeuchte im Prüfraum eingestellt werden. Da die Ausgangsfeuchten im Laborraum je nach Tag varierten, konnten mit dieser Methode nicht immer zeitnah die zur Prüfung notwendigen 70 % rL eingestellt werden. Teilweise kamen dadurch Wartezeiten von 3 h zustande. Darüber hinaus ist die verfügbare Menge Wasser-Glycerin-Mischung für die verwendeten Prüfraumvolumina gemäß DIN EN ISO „Kunststoffe - Kleine Kammern für die Konditionierung und Prüfung bei konstanter relativer Luftfeuchte über wässrigen Lösungen“ (16) zu gering. Um zum Zeitpunkt des Aufbaus der Prüfeinrichtung bereits eine relative Luftfeuchte von 70 % zu haben, wurde daher die Prüfeinrichtung in die Klimakammer gestellt. Weiterhin ist die Prüftemperatur dadurch konstant bei 23 °C. Dies ist ein wichtiger Punkt, der die Durchführung der
Untersuchungen in einem konstanten Umgebungsklima garantiert. Die in der Petrischale hinzugefügte Wasser-Glycerin-Mischung im Prüfraum trägt dazu bei, dass bei der Abkühlung und der darauffolgenden Betauung der Metallprobe die Verringerung der relativen Luftfeuchte teilweise ausgeglichen wird. Dies lässt sich an dem folgenden Diagramm erkennen, in dem bei abschließenden Erwärmung der Metallproben die relative Luftfeuchte über 70 % auf annähernd 100 % ansteigt. Dadurch wird die Metallprobentemperatur und somit die Korrosivität nicht so weit gesenkt.

Abbildung 28: Beispiel eines Klimaprofils

Abbildung 29: 9 Temperatursystem des Prüfaufbaus mit dem dazugehörigen Kühlsystem (Wasserkühlung)
5.2.3 Beurteilung von Korrosionserscheinungen

<table>
<thead>
<tr>
<th>Korrosionserscheinungen KE</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100 % der Fläche korrosionsfrei</td>
</tr>
<tr>
<td>1</td>
<td>feststellbare Nadelspitzenkorrosion an max. 2 Punkten</td>
</tr>
<tr>
<td>2</td>
<td>Sichtbare Nadelspitzenkorrosion an mind. 3 Punkten</td>
</tr>
<tr>
<td>3</td>
<td>Korrosionsfleck < 1 cm Nur eine Stelle des Teiles betroffen</td>
</tr>
<tr>
<td>4</td>
<td>Einzelne Teilflächen: Mehrere oder größere Korrosionsflächen (<15 % der Teiloberfläche betroffen)</td>
</tr>
<tr>
<td>5</td>
<td>Flächenkorrosion: sichtbare Korrosionsfläcken (<40 % der ges. Oberfläche)</td>
</tr>
<tr>
<td>6</td>
<td>Flächenkorrosion: Starker Korrosionsbefall (> 40 % der ges. Oberfläche)</td>
</tr>
<tr>
<td>7</td>
<td>Flächenkorrosion: Starker blühender Korrosionsbefall (> 70 % der ges. Oberfläche)</td>
</tr>
</tbody>
</table>

Abbildung 31: Korrosionsschaubilder nach BFSV

Abbildung 32: Korrosionsschaubilder nach TL 8135 - 0002
Aufgrund der feineren Abstufungen der Korrosionserscheinungen nach den Korrosionsschaubildern nach BFSV wird im Folgenden diese Beurteilungsmethode gewählt. Die Abstufungen werden in der folgenden Tabelle noch mit einem Farbcode (Ampelfarben) visuell unterstützt.

Tabelle 4: Bewertung der Korrosionserscheinungen nach BFSV

<table>
<thead>
<tr>
<th>Korrosionserscheinungen</th>
<th>Stufe</th>
<th>Beschreibung</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>100 % der Fläche korrosionsfrei</td>
<td>Gute Korrosionsschutzwirkung</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Feststellbare Nadelspitzenkorrosion an max. 2 Punkten</td>
<td>Mittlere Korrosionsschutzwirkung</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Sichtbare Nadelspitzenkorrosion an mind. 3 Punkten</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Korrosionsfleck < 1 cm Nur eine Stelle des Teils betroffen</td>
<td>Keine Korrosionsschutzwirkung</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Einzelne Teilflächen Mehrere oder größere Korrosionsflecken (<15 % der Oberfläche)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Flächenkorrosion sichtbare Korrosionsflecken (<40 % der Oberfläche)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Flächenkorrosion Starker Korrosionsbefall (>40 % der Oberfläche)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Flächenkorrosion Stark blühender Korrosionsbefall (> 70 % der Oberfläche)</td>
<td></td>
</tr>
</tbody>
</table>
5.2.4 Validierung des Prüfaufbaus 4. Ansatz

Treten bei den Nullproben eindeutige Korrosionserscheinungen mindestens nach Stufe 5 nach BFSV (siehe Bewertungssystem in Tabelle 4) auf, kann davon ausgegangen werden, dass die Metallproben einer ausreichenden korrosiven Belastung unterzogen wurden.

5.3 Arbeitsschritt 1 - Prüfung der Korrosionsschutzwirkung

Als zweite Methode kommt ein modifizierter Aufbau des, im vorigen Kapitel 5.2 entwickelten Prüfaufbau, 4. Ansatz zum Einsatz. Hierbei werden Zylinder mit einer Höhe von 5 cm verwendet. Das Prüfklima mit 23°C/70 % rL bleibt konstant, die Einwirkdauer beträgt 24 h.

Aufgrund der benötigten zeitaufwendigen Entwicklungsdauer der Prüfeinrichtung bis zum 4. Ansatz und der damit verbundenen langen Lagerdauer der VCI-Produkte werden für die weiteren Versuche neue VCI-Materialien angefordert.
Tabelle 5: Neu gelieferte VCI-Materialien

<table>
<thead>
<tr>
<th>Hersteller</th>
<th>Materialbezeichnung</th>
<th>Trägermaterial</th>
<th>Eigenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G Papier Multimetall, beidseitig wirksam</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H Folie Multimetall, beidseitig wirksam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C Papier Multimetall, einseitig wirksam</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D Folie Multimetall, einseitig wirksam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>I Papier, normal Multimetall, einseitig wirksam</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J Papier, gekrept Multimetall, einseitig wirksam</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.4 Arbeitsschritt 2b und 4 - Einfluss des Wirkabstandes

Ermittlung des Einflusses des Wirkabstandes mit der in Kapitel 5.2 entwickelten Prüfeinrichtung. Da allgemein davon ausgegangen wird, dass Papiere aufgrund herstellungsbedingter Faktoren die VCI-Wirkstoffe schneller abgeben, werden für die weiteren Untersuchungen vorerst VCI-Papiere verwendet. Die untersuchten Einwirkzeiten betrugen 0,5, 1, 2, 4, 8 und 24 h.

Die komplette abschließende Versuchsbeschreibung, wie sie aufgrund der vorangegangenen Vorversuche erstellt wurde, ist in den folgenden Kapiteln 5.4.1 bis 5.4.6 aufgeführt.

5.4.1 Prinzip der Prüfmethode

5.4.2 Vorbereitung und Lagerung Metallproben (Indikatoren)

Der unlegierte, beruhigte Baustahl der Indikatoren hat die Kurzbezeichnung S235JR+AR, die Werkstoff-Nr. nach DIN lautet 1.0038. Das Material besteht aus einem ferritisch-perlitischem Gefüge (5 % Perlit, 95 % Ferrit). In Anlehnung an TL 8135-0002 wird für die VCI-Prüfung und die Nullprobe als Ausgangsmaterial ein Rundstabmaterial mit einem Durchmesser von 16 mm eingesetzt. Für eine Versuchsreihe werden 108 Metallproben benötigt. Aus den jeweiligen Rundstäben werden 13 mm dicke Scheiben (Höhe der PP-Platte: 10 mm) ausgesägt. Die flachen Scheiben werden zunächst auf die Körnung 180 und dann auf 320 nass geschliffen und anschließend auf der Rückseite gekennzeichnet.

Für die Bestimmung der Anlagerungsrate werden Ronden aus dem o.g. Material mit einem Durchmesser von 50 und einer Höhe von 5 mm eingesetzt. Hiervon werden je Versuch (drei Wirkabstände) 18 Stück benötigt.

Abbildung 33: Plan gedrehte, geschliffene und markierte Metallproben (Indikatoren)

Um eine Berührung der Metallproben mit korrosiven Elementen (z.B. Handschweiß, etc.) zu vermeiden, wird mit Einweghandschuhen gearbeitet. Die Präparierung und Lagerung der Metallproben (Indikatoren) erfolgt räumlich getrennt von der Bearbeitung und Lagerung des VCI-Materials.

5.4.3 Vorbereitung und Lagerung VCI-Material

Als VCI-Probenmaterial werden Papierbögen in dem Format DIN A 4 (21 x 29,7 cm) oder vergleichbarer Größe eingesetzt. Nach der Anlieferung wird das VCI-Material in
der Originalverpackung bei einer Temperatur von ca. 7° C in einem Kühlschrank gelagert.

Die Bögen für die Versuche werden alle jeweils aus der Stapelmitte entnommen. Bei jeder Entnahme von Bögen für die Versuche, werden zusätzlich zur Bestimmung der Wirkstoffkonzentration 3 VCI-Bögen aus dem Stapel entnommen. Der erste Bogen ist der Zweite von oben und der dritte Bogen der Zweite von unten. Der zweite Bogen wird aus der Stapelmitte entnommen (siehe rot markierte Bögen in Abbildung 1). Alle drei VCI-Proben werden auf ihre Inhaltsstoffe hin analysiert.

Abbildung 34: Stapel VCI-Material

Aus der Analyse der Wirkstoffverteilung in den einzelnen Bögen kann ein Durchschnittswert bestimmt werden. Damit lassen sich Schlüsse auf die Gleichmäßigkeit ziehen, mit der die Wirkstoffe beim Produktionsprozess auf das Papier aufgetragen wurden sowie auf die Verteilung der Wirkstoffe in Abhängigkeit der Lagerung in dem Probenstapel.

5.4.4 Prüfeinrichtung, 4. Ansatz

Ein Öffnen der Klimakammer während der Betauungsphase zur Kontrolle der Kondensation auf den Metallproben ist ohne weiteres möglich, da dies die Probenraumtemperatur nur marginal beeinflusst. Die Rohre aus Plexiglas sind schlechte Wärme bzw. Temperaturleiter, so dass die Temperatur im Prüfraum nicht beeinflusst wird.
5.4.5 Versuchsaufbau, 4. Ansatz

In einem Parallelversuch werden immer drei unterschiedliche Wirkabstände mit derselben Einwirkzeit geprüft. Dazu werden in Reihe A drei Rohre (15, 30 und 60 cm Höhe) mit dem VCI-Material und Metallproben bestückt, siehe folgende Abbildung 35.

Nach der, in der Versuchsmatrix, definierten Einwirkzeit werden die Metallproben (Indikatoren) unter den Taupunkt abgekühlt und so eine Betauung erzwungen. Für die Nullprobe in Reihe B wird dieselbe Anordnung nur frei von VCI-Material aufgebaut, siehe Abbildung 36.
Bei ausreichend aufgetretenen Korrosionserscheinungen auf den Metalloberflächen der Nullproben, kann auf eine ausreichende korrosive Belastung der Metallproben in Reihe A geschlossen werden. Die, in der Reihe C gelagerten Metallproben werden jedoch vor der Betauungsphase mit Methanol in einem Ultraschallbad gereinigt (Reinigungsmethode siehe Kapitel 5.1.4). Das Eluat wird abgefüllt und auf seine Wirkstoffkonzentration hin analysiert.

Um die Kondensationsmenge in den Prüfzylindern möglichst nur auf die Indikatoroberflächen zu reduzieren, werden die Kupferplatten mit einer 10 mm dicken PP-Platte isoliert, in der sich Aussparungen für die Indikatoren befinden. Die Indikatoren haben direkten Kontakt zur Kupferplatte. PP hat im Gegensatz zu Kupfer eine geringe Wärmeleitfähigkeit und wird daher nur von dem Peltierelement nur in geringer Weise abgekühlt. Diese Anordnung gilt für die Reihen A und B, die Indikatoren für die Anlagerungsversuche sind isoliert von den Kupferplatten. Diese werden, wie bereits erwähnt nicht einer Betauung unterzogen.

Die Metallproben (Indikatoren) werden in die Aussparungen der PP-Platte auf die Kupferplatte gesetzt. Zwischen der Kupferplatte und den Metallproben wird zur besseren Wärmeübertragung zusätzlich eine Wärmeleitpaste verwendet.
Abbildung 38: Aufbau eines einzelnen Moduls, Nullprobeanordnung (4 Indikatoren, eine davon mit Thermoelement und Petrischale mit Wasser-Glycerin-Mischung)

Abbildung 39: Versuchsaufbau Nullprobe mit Temperatur/Feuchte-Fühler, Thermoelement, Kamera und Prüfzylinder (Reihe B)

Abbildung 40: Anordnung des Temperatur-Feuchte-Fühlers am Deckel, siehe hierzu auch Abbildung 39

10 ml einer Wasser-Glycerin-Mischung zur Einstellung einer relativen Luftfeuchte von 70 % im Prüfraum werden in eine Petrischale (Durchmesser 54 mm, Höhe 16 mm) gefüllt. Die Dichte der Mischung beträgt 1,133 g/ml.

In der Reihe C (Anlagerungsversuche) werden je sechs Metallproben (Ronden) mit dem Durchmesser 50 mm und der Höhe 5 mm eingesetzt (siehe folgende Abbildung
41). Aufgrund der größeren kumulierten Gesamtprobenoberfläche kann davon ausgegangen werden, dass die, bisher allgemein geringen Wirkstoffmenge besser analysiert werden kann bzw. die Nachweigrenzen der Analyseverfahren (HPLC und GC-MS) nicht unterschritten werden. Da die Probenvorbehandlung im Vergleich zu den VCI- und Nullproben exakt gleich sind, kann unter Berücksichtigung der unterschiedlichen Oberflächengrößen die zum Korrosionsschutz benötigte Wirkstoffmenge ermittelt werden.

Abbildung 41: Versuchsaufbau Anlagerungsraten, 4. Ansatz

5.4.6 Durchführung des Versuchs

Die Klimakammer wird auf das Klima 23°C/70% rL eingestellt. Dann werden die Indikatoren präpariert. Die geschliffenen und gereinigten Proben werden in einem Exsikkator in das Prüflabor gebracht. Alle Elemente des Prüfaufbaus (Zylinder und Deckel), die benötigten Utensilien (Wärmeleitzpaste, Klebeband, Messer und Handgerät zur Bestimmung der Luftfeuchtigkeit) sowie die Metallproben werden in die Klimakammer gebracht und die Tür verschlossen. Es befinden sich noch keine VCI-haltigen Materialien in der Kammer.

Daraufhin wird außerhalb der Kammer das, für die Prüfung benötigte VCI-Material ent-

In der folgenden Abbildung ist beispielhaft eine Versuchsmatrix zu sehen. Eine Matrix stellt die Untersuchung eines VCI-Materials gekoppelt mit einer Einwirkdauer dar. Dar gestellt sind in dieser Versuchsmatrix folgende Daten:

- Versuchs- sowie Probennummer
- Wirrabstand in cm und Einwirkdauer in h
- Nullprobe, VCI-Prüfung und Probenreinigung

Und sowie im Ergebnisteil:

- VCI-Konzentration im VCI-Ausgangsmaterial in µg/m²
- VCI-Anlagerungsraten an der Metalloberfläche in µg/m²
- Verhältnis der VCI-Anlagerungsmenge zur VCI-Ausgangsmenge in %
- Beurteilung der Korrosionserscheinungen nach TL und BFSV
- Auftreten der Korrosionserscheinungen nach t in min

Tabelle 6: Untersuchungsdauer der jeweiligen VCI-Produkte

<table>
<thead>
<tr>
<th>Versuchsreihe</th>
<th>VCI-Material*</th>
<th>Untersuchungsdauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G</td>
<td>7.2. - 4.3.</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>7.3. - 17.3.</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>18.3. - 25.3.</td>
</tr>
</tbody>
</table>

* für eine genauere Beschreibung siehe Tabelle 2 und Tabelle 5
Abbildung 43: Beispielhafte Darstellung einer Versuchsmatrix mit einer Einwirkdauer von 24 h

<table>
<thead>
<tr>
<th>Versuch</th>
<th>Probennummer</th>
<th>Abstand in cm</th>
<th>Einwirkzeit in h</th>
<th>Nüllprobe</th>
<th>VOI-Probe</th>
<th>Probenreihung</th>
<th>VOI-Konzentration im Ausgangsmaterial in µg/m²</th>
<th>VOI-Anlagerungsrate in der Metalloberfläche in µg/m²</th>
<th>Verhältnis der VOI-Anlagerungsmenge zur VOI-Ausgangsmenge in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2.1</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3.1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4.1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5.1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>6.1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6.2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6.3</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>7.1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7.3</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>8.1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8.2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8.3</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>9.1</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9.2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9.3</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Korrosionserscheinungen (K):

- Bewertung nach T: [Stufen 0 - 3]
- Bewertung nach EFSV: [Stufen 0 - 7]
- Ersten Auftreten nach [min]

* Vollflächige, ausgesprochene Korrosionserscheinungen entsprechen laut T1 der Stufe 0 und laut EFSV der Stufe 7, keine sichtbaren VOI entsprechen laut T1 der Stufe 1 und laut EFSV der Stufe 7

** k.K.: keine Kondensation der Metalloberflächen und daher keine Korrosionserscheinungen

- VOI: Verunreinigungs-Indikator

** Durchführung 56
6 Katalogisierung der Ergebnisse - Arbeitsschritt 5

Katalogisierung der Ergebnisse aus den Arbeitsschritten 1 bis 4 in Form von Tabellen und Diagrammen. Weiterhin werden in diesem Kapitel die Ergebnisse bewertet und in Bezug zueinander gesetzt. Die Reihenfolge entspricht der Durchführung der einzelnen Arbeitsschritte.

6.1 Ergebnisse zu den Arbeitsschritten 2c und 3

Hierfür wird zuerst ein Vergleich verschiedener Methoden zur Reinigung der Werkstoffproben durchgeführt. Das Ergebnis des Vergleichs wird am Beispiel von Benzotriazol aufgezeigt.

![Abbildung 44: Vergleich der Methoden zur Lösung der VCI-Moleküle](image)

Die Ergebnisse zeigen, dass die Reinigung der Probenoberfläche mit der Ultraschallmethode wesentlich effektiver ist als die Spülmethode.

Aufgrund des Ergebnisses wird für alle anfallenden Oberflächenreinigungen die Ultraschallmethode eingesetzt. Diese Reinigung bezieht sich auf die Bestimmung der Anlagerungsraten der VCI-Wirkstoffe auf den Indikatoren- also den Werkstoffoberflächen.

Weiterhin wurden allgemein die Wirkstoffe bestimmt, die in den VCI-Produkten enthalten sind, im folgenden Schritt wurden die Anlagerungsraten an den, in Kapitel 5.1.1 beschriebenen, Werkstoffe.
Tabelle 7: Wirkstoffanalyse der VCI-Folie (Hersteller 1; Material A)

<table>
<thead>
<tr>
<th>VCI-Komponente</th>
<th>VCI-Gehalt der Folie von Hersteller 1 in g/kg*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,61</td>
</tr>
<tr>
<td>3</td>
<td>0,49</td>
</tr>
<tr>
<td>5</td>
<td>0,3</td>
</tr>
<tr>
<td>8</td>
<td>0,14</td>
</tr>
<tr>
<td>17</td>
<td>0,38</td>
</tr>
<tr>
<td>20</td>
<td>0,22</td>
</tr>
</tbody>
</table>

* Die Inhaltsstoffe des Herstellers 1 sind jeweils anonymisiert.

Tabelle 8: Wirkstoffanalyse des VCI-Papiers (Hersteller 1; Material B)

<table>
<thead>
<tr>
<th>VCI-Komponente</th>
<th>VCI-Gehalt des Papiers von Hersteller 1 in µg/cm²*</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>86,9</td>
</tr>
<tr>
<td>5</td>
<td>133,1</td>
</tr>
<tr>
<td>8</td>
<td>5,8</td>
</tr>
<tr>
<td>11</td>
<td>27,1</td>
</tr>
</tbody>
</table>

Tabelle 9: Wirkstoffanalyse der VCI-Folie (Hersteller 2; Material C)

<table>
<thead>
<tr>
<th>VCI-Komponente</th>
<th>VCI-Gehalt der Folie von Hersteller 2 in g/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzimidiazol</td>
<td>0,1</td>
</tr>
<tr>
<td>Benzoat, bestimmt als Benzoësäure</td>
<td>1,89</td>
</tr>
</tbody>
</table>
Tabelle 10: Wirkstoffanalyse der VCI-Papiers (Hersteller 2; Material D)

<table>
<thead>
<tr>
<th>VCI-Komponente</th>
<th>VCI-Gehalt des Papiers von Hersteller 2 in µg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzoat, bestimmt als Benzoatesäure</td>
<td>188,7</td>
</tr>
<tr>
<td>Ethanolamin</td>
<td>30,4</td>
</tr>
<tr>
<td>Benzotriazol</td>
<td>83,0</td>
</tr>
<tr>
<td>Harnstoff</td>
<td>380,2</td>
</tr>
</tbody>
</table>

Tabelle 11: Wirkstoffanalyse der VCI-Folie (Hersteller 3; Material E)

<table>
<thead>
<tr>
<th>VCI-Komponente</th>
<th>VCI-Gehalt der Folie von Hersteller 3 in g/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzotriazol</td>
<td>0,08</td>
</tr>
<tr>
<td>Natriumnitrit</td>
<td>0,35</td>
</tr>
<tr>
<td>Sebacinsäure</td>
<td>0,11</td>
</tr>
<tr>
<td>Palmitinsäure</td>
<td>0,05</td>
</tr>
<tr>
<td>Stearinsäure</td>
<td>0,04</td>
</tr>
</tbody>
</table>

Tabelle 12: Wirkstoffanalyse des VCI-Papiers (Hersteller 3; Material F)

<table>
<thead>
<tr>
<th>VCI-Komponente</th>
<th>VCI-Gehalt des Papiers von Hersteller 3 in µg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanolamin</td>
<td>37,0</td>
</tr>
<tr>
<td>Triethanolamin</td>
<td>17,4</td>
</tr>
<tr>
<td>Benzoesäure</td>
<td>7,1</td>
</tr>
<tr>
<td>Benzotriazol</td>
<td>11,3</td>
</tr>
<tr>
<td>3,5,5-Trimethylhexansäure</td>
<td>16,6</td>
</tr>
</tbody>
</table>
In den folgenden Tabellen sind die Anlagerungs- sowie Akkumulationsraten der sechs VCI-Produkte an den in Kapitel 24 beschriebenen Werkstoffe zu sehen.

Tabelle 13: Anlagerungs- bzw. Akkumulationsraten VCI-Folie (Hersteller 1; Material A)

<table>
<thead>
<tr>
<th>Werkstoff</th>
<th>Gehalt VCI-Komponenten in µg/ml*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>PE</td>
<td>< 1,0</td>
</tr>
<tr>
<td>PP</td>
<td>< 1,0</td>
</tr>
<tr>
<td>ABS</td>
<td>3,8</td>
</tr>
<tr>
<td>AlCuMgPb</td>
<td>< 1,0</td>
</tr>
<tr>
<td>MS</td>
<td>< 1,0</td>
</tr>
<tr>
<td>Cu</td>
<td>< 1,0</td>
</tr>
<tr>
<td>CK45</td>
<td>< 1,0</td>
</tr>
<tr>
<td>Glycerin-Wasser-Gemisch</td>
<td>< 1,0</td>
</tr>
</tbody>
</table>

Tabelle 14: Anlagerungs- bzw. Akkumulationsraten VCI-Papier (Hersteller 1; Material B)

<table>
<thead>
<tr>
<th>Werkstoff</th>
<th>Gehalt VCI-Komponenten in µg/ml*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>PE</td>
<td>0,6</td>
</tr>
<tr>
<td>PP</td>
<td>< 0,5</td>
</tr>
<tr>
<td>ABS</td>
<td>7,2</td>
</tr>
<tr>
<td>AlCuMgPb</td>
<td>2,1</td>
</tr>
<tr>
<td>MS</td>
<td>5,1</td>
</tr>
<tr>
<td>Cu</td>
<td>6,1</td>
</tr>
<tr>
<td>CK45</td>
<td>1,3</td>
</tr>
<tr>
<td>Glycerin-Wasser-Gemisch</td>
<td>2,4</td>
</tr>
</tbody>
</table>
Tabelle 15: Anlagerungs- bzw. Akkumulationsraten VCI-Folie (Hersteller 2; Material C)

<table>
<thead>
<tr>
<th>Werkstoff</th>
<th>Gehalt VCI-Komponenten in µg/ml</th>
<th>Benzoat, bestimmt als Benzoesäure</th>
<th>Benzimidiazol</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>< 0,5</td>
<td>< 5,0</td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td>< 0,5</td>
<td>< 5,0</td>
<td></td>
</tr>
<tr>
<td>ABS</td>
<td>4,6</td>
<td>11,5</td>
<td></td>
</tr>
<tr>
<td>AlCuMgPb</td>
<td>0,59</td>
<td>7,7</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>3,8</td>
<td>9,6</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>1,7</td>
<td>9,8</td>
<td></td>
</tr>
<tr>
<td>CK45</td>
<td>< 0,5</td>
<td>8</td>
<td>< 5,0</td>
</tr>
<tr>
<td>Glycerin-Wasser-Gemisch</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 16: Anlagerungs- bzw. Akkumulationsraten VCI-Papier (Hersteller 2; Material D)

<table>
<thead>
<tr>
<th>Werkstoff</th>
<th>Gehalt VCI-Komponenten in µg/ml</th>
<th>Benzoat, bestimmt als Benzoesäure</th>
<th>Ethanolamin</th>
<th>Benzotriazol</th>
<th>Harnstoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>< 1,0</td>
<td>< 50</td>
<td>0,83</td>
<td>< 50</td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td>< 1,0</td>
<td>< 50</td>
<td>0,67</td>
<td>< 50</td>
<td></td>
</tr>
<tr>
<td>ABS</td>
<td>8,9</td>
<td>< 50</td>
<td>16,3</td>
<td>< 50</td>
<td></td>
</tr>
<tr>
<td>AlCuMgPb</td>
<td>4,6</td>
<td>< 50</td>
<td>3,4</td>
<td>< 50</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>16,0</td>
<td>< 50</td>
<td>5,4</td>
<td>< 50</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>9,8</td>
<td>< 50</td>
<td>1,5</td>
<td>< 50</td>
<td></td>
</tr>
<tr>
<td>CK45</td>
<td>1,5</td>
<td>< 50</td>
<td>2,9</td>
<td>< 50</td>
<td></td>
</tr>
<tr>
<td>Glycerin-Wasser-Gemisch</td>
<td>10,0</td>
<td>< 50</td>
<td>5,1</td>
<td>< 50</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 17: Anlagerungs- bzw. Akkumulationsraten VCI-Folie (Hersteller 3; Material E)

<table>
<thead>
<tr>
<th>Werkstoff</th>
<th>Gehalt VCI-Komponenten in µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Benzotriazol</td>
</tr>
<tr>
<td>PE</td>
<td>0,8</td>
</tr>
<tr>
<td>PP</td>
<td>0,8</td>
</tr>
<tr>
<td>ABS</td>
<td>13,6</td>
</tr>
<tr>
<td>AlCuMgPb</td>
<td>2,0</td>
</tr>
<tr>
<td>MS</td>
<td>3,6</td>
</tr>
<tr>
<td>Cu</td>
<td>2,3</td>
</tr>
<tr>
<td>CK45</td>
<td>2,3</td>
</tr>
<tr>
<td>Glycerin-Wasser-Gemisch</td>
<td>10,7</td>
</tr>
</tbody>
</table>

Tabelle 18: Anlagerungs- bzw. Akkumulationsraten VCI-Papier (Hersteller 3; Material F)

<table>
<thead>
<tr>
<th>Werkstoff</th>
<th>Gehalt VCI-Komponenten in µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Benzotriazol</td>
</tr>
<tr>
<td>PE</td>
<td>0,6</td>
</tr>
<tr>
<td>PP</td>
<td>0,7</td>
</tr>
<tr>
<td>ABS</td>
<td>7,3</td>
</tr>
<tr>
<td>AlCuMgPb</td>
<td>2,1</td>
</tr>
<tr>
<td>MS</td>
<td>2,5</td>
</tr>
<tr>
<td>Cu</td>
<td>6,9</td>
</tr>
<tr>
<td>CK45</td>
<td>1,5</td>
</tr>
<tr>
<td>Glycerin-Wasser-Gemisch</td>
<td>1,3</td>
</tr>
</tbody>
</table>

Tabelle 19: Anlagerungsrationen VCI-Papier (Hersteller 1; Material G)

<table>
<thead>
<tr>
<th>Werkstoff</th>
<th>VCI-Gehalt der Komponente Nr. in µg/ml*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Plexiglas</td>
<td>< 0,04</td>
</tr>
<tr>
<td>Baustahl nach TL 8135-0002</td>
<td>< 0,04</td>
</tr>
</tbody>
</table>

*) Spuren an der Nachweisgrenze (entspricht einer ja/nein Entscheidung) zu erkennen, Wert aber unterhalb der angegebenen Bestimmungsgrenze

6.2 Ergebnisse zum Arbeitsschritt 2a

Die Ergebnisse der Vorversuche zur Optimierung der Betauungsparameter sind in folgender Tabelle zu sehen. Die entsprechende fotografische Dokumentation der Proben befindet sich im Anhang A.

Tabelle 20: Optimierung der Betauungsparameter

<table>
<thead>
<tr>
<th>Vorversuch</th>
<th>Dauer der Betauungsphase* in min, Werte in Klammern Temperaturunterschied relativ zum Taupunkt in °C</th>
<th>Bewertung der Korrosionerscheinungen nach BFSV (siehe Kapitel 5.2.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phase 1</td>
<td>Phase 2</td>
</tr>
<tr>
<td>1</td>
<td>10 (-12)</td>
<td>100 (-1)</td>
</tr>
<tr>
<td>2</td>
<td>20 (-8)</td>
<td>100 (-1)</td>
</tr>
<tr>
<td>3</td>
<td>20 (-5)</td>
<td>140 (-1)</td>
</tr>
<tr>
<td>4</td>
<td>20 (-8)</td>
<td>170 (-1)</td>
</tr>
<tr>
<td>5</td>
<td>20 (-5)</td>
<td>170 (-1)</td>
</tr>
</tbody>
</table>

*) Phase 1: Abkühlung der Metallprobe
Phase 2: Halten der Betauung auf der Metallprobe
Phase 3: Erwärmung und Trocknung der Metallprobe
Tabelle 21: Vergleich der Methoden zur Prüfung der VCI-Korrosionsschutzwirkung*

Parameter	Prüfung der Korrosionsschutzwirkung nach	
	TL	BFSV 4. Ansatz
Prüfraumvolumen in cm³	1200	1162 (reine Korrosionsschutzwirkung)
		Ansonsten nach Definition
VCI-Materialfläche in cm²	36,25	232
Verhältnis von Prüfraumvolumen zu VCI-Materialfläche	33,1	5
Einwirkdauer in h	22	24 (reine Korrosionsschutzwirkung)
		Ansonsten nach Definition
Temperatur während der Betauung in °C	40	23
Betauungsdauer in h	2	3,5 (variabel)

* siehe Kapitel 5.3

Abbildung 45: Klimaprofil Prüfeinrichtung BFSV, 4. Ansatz
Klimadaten TL 8135-0002 Test zur Prüfung der VCI-Korrosionsschutzwirkung

Abbildung 46: Klimaprofil TL 8135-0002
6.3 Ergebnisse zum Arbeitsschritt 1

In der folgenden Tabelle werden die Ergebnisse der Prüfungen der Korrosionsschutzwirkung der einzelnen VCI-Produkte dargestellt. Geprüft wurden diese, wie in Kapitel 5.3 beschrieben, mit zwei Prüfmethoden:

- Nach TL 8135-0002
- Nach BFSV 4. Ansatz

Tabelle 22: Ergebnisse der Prüfung der Korrosionsschutzwirkung der VCI-Materialien

<table>
<thead>
<tr>
<th>Hersteller</th>
<th>Materialbezeichnung</th>
<th>Trägermaterial</th>
<th>Korrosionsschutzwirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>BFSV 4. Ansatz</td>
</tr>
<tr>
<td>1</td>
<td>A Papier n.d.*</td>
<td>Mittlere</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>B Folie n.d.</td>
<td>Gute</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>G Papier</td>
<td>Gute</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>H Folie n.d.</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C Papier</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>D Folie n.d.</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E Papier</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F Folie</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>I Papier, gekrept</td>
<td>Gute</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>J Papier</td>
<td>Gute</td>
<td></td>
</tr>
</tbody>
</table>

* nicht durchgeführt

6.4 Ergebnisse zu den Arbeitsschritten 2b und 4

In diesem Kapitel werden die Ergebnisse in Form von Diagrammen dargestellt, die einen direkten Vergleich zwischen Nullprobe und VCI-Prüfung erlauben. Die Bewertung der Korrosionserscheinungen wird noch farblich unterstützt (Ampelfarben, siehe Kapitel 5.2.3). Die endgültigen Prüfungen wurden an den drei Materialien G (Versuchsreihe 1), J (Versuchsreihe 2) und C (Versuchsreihe 3) durchgeführt. Dazu genommen wurden die Materialien I und J, da diese dieselben Wirkstoffe enthalten. Das VCI-Material J liegt als gekrepptes Papier vor. Die Prüfung zeigte, dass
dieses gekreppte Papier nicht geeignet ist, um einen VCI-Korrosionsschutz über eine Entfernung von mindestens 15 cm aufzubauen (siehe Kapitel 6.4.2).
Weiterhin sind die Wirkstoffmengen bei jeder Entnahme von VCI-Material, wie in Kapitel 5.4.6 beschrieben, analysiert worden. Der Grund hierfür sind die schlechten Erfahrungen mit den ersten angelieferten Materialien. Zudem soll hiermit festgestellt werden, ob die Entnahmen einen Einfluss auf die Wirkstoffmenge haben und so die Art der Lagerung der VCI-Produkte validiert werden.

6.4.1 Versuchsreihe 1 (VCI-Papier G, Hersteller 1)

Tabelle 23: Wirkstoffanalyse des VCI-Papiers G während Versuchsreihe 1

<table>
<thead>
<tr>
<th>Probe</th>
<th>Entnahme aus dem Stapel</th>
<th>Versuchs-Nr.</th>
<th>VCI-Gehalt der Komponente Nr. in µg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 - 9</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Oben</td>
<td></td>
<td>8,6</td>
</tr>
<tr>
<td>2</td>
<td>Mitte</td>
<td></td>
<td>7,1</td>
</tr>
<tr>
<td>3</td>
<td>unten</td>
<td></td>
<td>7,3</td>
</tr>
<tr>
<td>4</td>
<td>Oben</td>
<td>10 - 18</td>
<td>6,9</td>
</tr>
<tr>
<td>5</td>
<td>Mitte</td>
<td></td>
<td>8,1</td>
</tr>
<tr>
<td>6</td>
<td>unten</td>
<td></td>
<td>7,0</td>
</tr>
<tr>
<td>7</td>
<td>Oben</td>
<td>37 - 45</td>
<td>6,5</td>
</tr>
<tr>
<td>8</td>
<td>Mitte</td>
<td></td>
<td>5,8</td>
</tr>
<tr>
<td>9</td>
<td>unten</td>
<td></td>
<td>6,4</td>
</tr>
<tr>
<td>10</td>
<td>Oben</td>
<td>46 - 54</td>
<td>6,5</td>
</tr>
<tr>
<td>11</td>
<td>Mitte</td>
<td></td>
<td>5,8</td>
</tr>
<tr>
<td>12</td>
<td>Unten</td>
<td></td>
<td>6,8</td>
</tr>
<tr>
<td>13</td>
<td>Oben</td>
<td>55 - 60</td>
<td>7,6</td>
</tr>
<tr>
<td>14</td>
<td>Mitte</td>
<td></td>
<td>6,1</td>
</tr>
<tr>
<td>15</td>
<td>unten</td>
<td></td>
<td>6,4</td>
</tr>
</tbody>
</table>
Tabelle 24: Beginn der ersten Korrosionserscheinungen (Versuchsreihe 1)*

<table>
<thead>
<tr>
<th>Versuch</th>
<th>Art</th>
<th>Detektierung der ersten Korrosionserscheinungen nach ... min</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nullprobe</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>Nullprobe</td>
<td>25</td>
</tr>
<tr>
<td>37</td>
<td>Nullprobe</td>
<td>25</td>
</tr>
<tr>
<td>46</td>
<td>Nullprobe</td>
<td>30</td>
</tr>
<tr>
<td>55</td>
<td>Nullprobe</td>
<td>30</td>
</tr>
<tr>
<td>60</td>
<td>VCI-Prüfung</td>
<td>50</td>
</tr>
<tr>
<td>61</td>
<td>Nullprobe</td>
<td>40</td>
</tr>
<tr>
<td>62</td>
<td>Nullprobe</td>
<td>25</td>
</tr>
<tr>
<td>63</td>
<td>Nullprobe</td>
<td>30</td>
</tr>
<tr>
<td>64</td>
<td>Nullprobe</td>
<td>35</td>
</tr>
</tbody>
</table>

* Aufgeführt sind nur die Proben, an denen Korrosion detektiert wurde und die von Kameras beobachtet wurden

Diagramm 1: Korrosionsverhalten nach einer Einwirkdauer von 24 h mit Papier G
Diagramm 2: Korrosionsverhalten nach einer Einwirkdauer von 8 h

Diagramm 3: Korrosionsverhalten nach einer Einwirkdauer von 1 h
Diagramm 4: Korrosionsverhalten nach einer Einwirkdauer von 0,5 h

Diagramm 5: Korrosionsverhalten nach einer Einwirkdauer von 0 h
Diagramm 6: Korrosionsverhalten der Nullproben, durchgeführt in den Zylinder mit denen die vorangegangenen VCI-Prüfungen durchgeführt wurden (Einfluss von möglicher Migration von VCI-Molekülen in Kunststoff)

Tabelle 25: Anlagerungsraten an den Metallproben in Versuchsreihe 1

<table>
<thead>
<tr>
<th>Versuch</th>
<th>Methanolisches Eluat (WA, Einwirkdauer)</th>
<th>VCI-Gehalt der Komponente Nr. in µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Versuch 7 (WA=15 cm, 24 h)</td>
<td>0,20</td>
</tr>
<tr>
<td>2</td>
<td>Versuch 8 (WA=30 cm, 24 h)</td>
<td>0,05</td>
</tr>
<tr>
<td>3</td>
<td>Versuch 9 (WA=60 cm, 24 h)</td>
<td>0,03</td>
</tr>
<tr>
<td>4</td>
<td>Versuch 16 (WA=15 cm, 8 h)</td>
<td>0,04</td>
</tr>
<tr>
<td>5</td>
<td>Versuch 17 (WA=30 cm, 8 h)</td>
<td>0,05</td>
</tr>
<tr>
<td>6</td>
<td>Versuch 18 (WA=60 cm, 8 h)</td>
<td>0,03</td>
</tr>
<tr>
<td>7</td>
<td>Versuch 43 (WA=15 cm, 1 h)</td>
<td>0,13</td>
</tr>
</tbody>
</table>
6.4.2 Versuchsreihe 2: (VCI-Papier J, Hersteller 4)

Tabelle 26: Wirkstoffanalyse des VCI-Papiers J während Versuchsreihe 2

<table>
<thead>
<tr>
<th>Probe</th>
<th>Entnahme aus dem Stapel</th>
<th>Versuchs-Nr.</th>
<th>VCI-Gehalt der Komponente Nr. in µg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>25 - 30</td>
<td>Dicyclohexylamin</td>
</tr>
<tr>
<td>1</td>
<td>Oben</td>
<td></td>
<td>164,1</td>
</tr>
<tr>
<td>2</td>
<td>Mitte</td>
<td></td>
<td>158,7</td>
</tr>
<tr>
<td>3</td>
<td>unten</td>
<td></td>
<td>155,4</td>
</tr>
<tr>
<td>4</td>
<td>Oben</td>
<td>1 - 6</td>
<td>164,6</td>
</tr>
<tr>
<td>5</td>
<td>Mitte</td>
<td></td>
<td>167,0</td>
</tr>
<tr>
<td>6</td>
<td>unten</td>
<td></td>
<td>143,6</td>
</tr>
<tr>
<td>7</td>
<td>Oben</td>
<td>7 - 12</td>
<td>161,7</td>
</tr>
<tr>
<td>8</td>
<td>Mitte</td>
<td></td>
<td>160,8</td>
</tr>
<tr>
<td>9</td>
<td>unten</td>
<td></td>
<td>164,1</td>
</tr>
</tbody>
</table>

Tabelle 27: Beginn der ersten Korrosionserscheinungen (Versuchsreihe 2)

<table>
<thead>
<tr>
<th>Versuch</th>
<th>Art</th>
<th>Sichtung der ersten Korrosionserscheinungen nach ... min</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>VCI-Prüfung</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>Nullprobe</td>
<td>40</td>
</tr>
</tbody>
</table>

* Aufgeführt sind nur die Proben, an denen Korrosion detektiert wurde und die von Kameras beobachtet wurden
Diagramm 7: Korrosionsverhalten nach einer Einwirkdauer von 24 h

Diagramm 8: Korrosionsverhalten nach einer Einwirkdauer von 48 h
Tabelle 28: Anlagerungsraten an den Metallproben in Versuchsreihe 2

<table>
<thead>
<tr>
<th>Versuch</th>
<th>Methanolisches Eluat (WA, Einwirkdauer)</th>
<th>VCI-Gehalt der Komponente Nr. in µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dicyclohexylamin</td>
</tr>
<tr>
<td>1</td>
<td>Versuch 7 (WA=15 cm, 24 h)</td>
<td>7,6</td>
</tr>
</tbody>
</table>

6.4.3 Versuchsreihe 3: (VCI-Papier C, Hersteller 2)

Tabelle 29: Wirkstoffanalyse des VCI-Papiers C während der Versuchsreihe 3

<table>
<thead>
<tr>
<th>Probe</th>
<th>Entnahme aus dem Stapel</th>
<th>Versuchs-Nr.</th>
<th>VCI-Gehalt der Komponente Nr. in µg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Benzoat</td>
</tr>
<tr>
<td>1</td>
<td>Oben</td>
<td>1 - 6</td>
<td>160,1</td>
</tr>
<tr>
<td>2</td>
<td>Mitte</td>
<td></td>
<td>166,7</td>
</tr>
<tr>
<td>3</td>
<td>unten</td>
<td></td>
<td>170,6</td>
</tr>
<tr>
<td>4</td>
<td>Oben</td>
<td>7 - 12</td>
<td>156,8</td>
</tr>
<tr>
<td>5</td>
<td>Mitte</td>
<td></td>
<td>161,8</td>
</tr>
<tr>
<td>6</td>
<td>unten</td>
<td></td>
<td>167,6</td>
</tr>
</tbody>
</table>
Tabelle 30: Beginn der ersten Korrosionserscheinungen (Versuchsreihe 3)*

<table>
<thead>
<tr>
<th>Versuch</th>
<th>Art</th>
<th>Sichtung der ersten Korrosionserscheinungen nach … min</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nullprobe</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>VCI-Prüfung</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>VCI-Prüfung</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>Nullprobe</td>
<td>45</td>
</tr>
<tr>
<td>10</td>
<td>VCI-Prüfung</td>
<td>45</td>
</tr>
<tr>
<td>11</td>
<td>VCI-Prüfung</td>
<td>40</td>
</tr>
<tr>
<td>12</td>
<td>VCI-Prüfung</td>
<td>45</td>
</tr>
</tbody>
</table>

* Aufgeführt sind nur die Proben, an denen Korrosion detektiert wurde und die von Kameras beobachtet wurden

Diagramm 9: Korrosionsverhalten nach einer Einwirkdauer von 24 h
Diagramm 10: Korrosionsverhalten nach einer Einwirkdauer von 48 h

Bewertung der Korrosionerscheinungen nach BFSV (0 = korrosionsfrei; 7 = Flächenkorrosion > 70 %)
7 Diskussion der Ergebnisse

7.1 Anlagerungs- und Akkumulationsraten (Arbeitsschritt 2c und 3)

Darüber hinaus sind bei diesen geringen Mengen von VCI-Wirkstoffen, die sich an den Metalloberflächen anlagern, die Reinigungsprozesse zu ungenau. Es kann jedoch aufgrund der Bestimmung der Anlagerungsraten gezeigt werden, dass die erforderliche Wirkstoffmenge bei den verwendeten Metallen nur geringfügig voneinander abweicht. Demzufolge ist keiner der hier verwendeten Werkstoffe (Kunststoff und Metall) ein besonders VCI-Wirkstoff verbrauchender Werkstoff.

Bei den Kunststoffen trat im Laufe des Projekts die Frage auf, inwieweit Migrationseffekte auftreten, d.h. VCI-Wirkstoffe nach der Anlagerung in den Kunststoff eindringen.
Diskussion der Ergebnisse

Für den Prüfaufbau stellt sich die Frage ob diese Migrationseffekte bei den, im Prüfaufbau eingesetzten Kunststoffe (Plexiglas und Polypropylen), die Prüfung von VCI-Produkten beeinflussen. Hierzu wurden in Versuchsreihe 1 die Versuche 61 bis 64 (Nullprobenversuche, siehe Diagramm 6) durchgeführt. Diese zeigen eindeutige Korrosionserscheinungen auch beim Einsatz der Zylinder und sonstiger Elemente, die bei den VCI-Versuchen verwendet wurden. Damit kann ausgeschlossen werden, dass VCI-Wirkstoffe, die evtl. in den Kunststoffen verbleiben, die Prüfung und somit die Untersuchungsergebnisse verfälschen.

7.2 Entwicklung der Prüfeinrichtung (Arbeitsschritt 2a)

Diskussion der Ergebnisse

...nung der VCI-Muster eine gute Handhabung gewährleistet. Eine Über- oder Unterdimensionierung wird praktisch ausgeschlossen. Mit der Änderung der Software kann die Einwirkdauer sehr genau (± 30 s) eingegrenzt werden, so dass auch bei kurzen Einwirkzeiten (z.B. 30 min) exakte Versuche durchgeführt werden können. Dies wurde dadurch erreicht, dass der Abstieg der Führung, und somit der Metalloberflächentemperatur, bereits vor dem Ende der Einwirkdauer beginnt und der Schnittpunkt der Taupunkttemperatur das Ende der Einwirkdauer und den Beginn der Betauung darstellt.

Eine Eingrenzung dieser Prüfmethode ergibt sich durch die verschiedenen Volumina der Zylinder. Die Korrosionserscheinungen der Nullproben können dadurch teilweise variieren, vor allem bei längeren Einwirkzeiten. Da sich vermutlich bei längeren Einwirkzeiten die Primäreoxidschicht auf den Metallproben ausbildet und dadurch ein natürlicher Korrosionsschutz gebildet wird. Die Betauungsparameter sind zudem auf den Wirkabstand 15 cm optimiert.

Jedoch können alle abgebildeten Nullproben in folgender Tabelle 31: Drei Nullproben
Diskussion der Ergebnisse

je Wirkabstand (Einwirkdauer 8 h) als ausreichend angesehen und mit der Korrosionsstufe mindestens 5 nach BFSV bewertet werden.

Tabelle 31: Drei Nullproben je Wirkabstand (Einwirkdauer 8 h)

<table>
<thead>
<tr>
<th>Wirkabstand</th>
<th>Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td> </td>
</tr>
<tr>
<td>30</td>
<td> </td>
</tr>
<tr>
<td>60</td>
<td> </td>
</tr>
</tbody>
</table>

Dies liegt an dem unterschiedlichen Feuchtigkeitsentzug in Abhängigkeit der Zylindervolumina aufgrund der Betauung der Metalloberflächen. Die absolute entzogene Feuchtemenge bleibt jedoch konstant. Es verringert sich die relative Luftfeuchte bei einem größeren Volumen weniger stark, da die absolute Feuchtemenge hierbei höher ist. Da das Thermoelement und der Feuchtefühler sich jedoch im kleinsten Zylinder befindet, werden alle Metallproben auf jeden Fall unter Taupunkttemperatur gebracht (siehe folgende Abbildung 48).

Eine weitere Einschränkung ist, dass die relative Luftfeuchtigkeit in der Prüfatmosphäre trotz sorgfältiger Vorbereitung Schwankungen unterworfen ist. Bei gleicher Dichte der Wasser-Glycerin-Mischung können bei zwei verschiedenen Versuchen Schwankungen der relativen Luftfeuchtigkeit während der Einwirkdauer zwischen 65 % und 73 % auftreten (siehe Anhänge E, F und G). Diverse Vorversuche ergaben eine optimale Dichte der Wasser-Glycerin-Mischung von 1,133 g/ml. Da jedoch die Absenkung der Metallprobentemperatur immer relativ zum Taupunkt durchgeführt wird, wirken sich diese Unterschiede nicht so stark aus.
Diskussion der Ergebnisse

Abbildung 48: Messung der relativen Luftfeuchte bei den Wirkabständen 15 (dunkelblau) und 60 cm (hellblau)

Weiterhin werden für jeden Wirkabstand immer parallel Nullproben geprüft, die einen direkten Vergleich der VCI-Proben mit der korrosiven Belastung erlauben. Somit wird sichergestellt, dass die korrosive Belastung ausreichend ist.

Eine positive Resonanz aus der VCI-Industrie gegenüber dieser Prüfeinrichtung bzw. der entwickelten Prüfmethode konnten im Rahmen einer Präsentation sowie im Verlauf der projektbegleitenden Ausschüsse bereits gewonnen werden.

7.3 Prüfung der Korrosionsschutzwirkung (Arbeitsschritt 1)

Wie den Ergebnissen zu entnehmen ist, führte die Prüfung der Korrosionsschutzwirkung mit beiden Prüfmethoden zu denselben Ergebnissen. Somit besteht eine hohe Korrelation hinsichtlich der Ergebnisse zwischen der bewährten Prüfmethode nach TL

7.4 Einfluss des Wirkabstandes (Arbeitsschritt 2b und 4)

Nach der Entwicklung der Prüfeinrichtung wurde ein Versuchsablauf (siehe Kapitel 5.4.6) erstellt. Die Versuchsreihen 1 bis 3 wurden gemäß diesem Ablauf durchgeführt. Die Ergebnisse zeigen klare Unterschiede zwischen den verwendeten VCI-Papieren. In Versuchsreihe 1 wurde der VCI-Korrosionsschutz mit VCI-Produkt G teilweise bereits nach einer Einwirkdauer von 0 h aufgebaut. Die Einwirkdauer ist, wie bereits beschrieben, als die Zeit zwischen Applikation des VCI-Trägers und dem Beginn der Be tauung definiert. In diesem Fall bedeutet das, dass das VCI-Material exakt mit Beginn der Betauung appliziert wurde. (Schnellflüchter) Die Aufnahmen mit den Mikroskopkameras haben gezeigt, dass der Beginn der Korrosion zwischen 25 und 45 min (siehe Tabelle 24, Tabelle 27 und Tabelle 30) nach Beginn der Betauung aufgetre-
ten sind. Wahrscheinlich konnten hierbei wasserlösliche VCI-Wirkstoffe durch den dünnen Feuchtigkeitsfilm dringen und an der Metalloberfläche einen VCI-Korrosionsschutz aufbauen, bevor die es an der Metalloberfläche zu ersten Korrosionsscheinungen kommt.

Versuchsreihe 3 zeigt, dass bestimmte VCI-Produkte, die für Stahl konzipiert sind, keine akzeptable korrosionsschützende Wirkung aufbauen können.

Als Fazit kann gesagt werden, dass die Prüfmethode BFSV, 4. Ansatz gut eingesetzt werden kann, um VCI-Produkte hinsichtlich ihrer Eignung, auf Distanz zu wirken, zu untersuchen. Der Aufwand im Vergleich beispielsweise zur Prüfung nach TL 8135-0002 (siehe Kapitel 2.3) ist erheblich höher. Der große Vorteil der BFSV Methode (4. Ansatz) ist aber die Ermittlung quantifizierbarer Größen zur Beurteilung von flächigen VCI-Produkten.
8 Fazit

Darüber hinaus sollten die angestrebten Forschungsergebnisse Aufschluss darüber geben, in welchem Umfang, die für den VCI-Korrosionsschutz erforderliche Wirkstoffmenge eingesetzt werden muss, dies unter den Voraussetzungen der Anlagerungsraten von VCI’s an Packgütern und -stoffen sowie der Wirkradien der VCI-Mittel.

Um dennoch die Einwirkdauer zu bestimmen, wurden iterativ weitere Ansätze der Prüfeinrichtung entwickelt (siehe Kapitel 5.2). Hierbei wirkten VCI-Produkte über einen bestimmten Wirkabstand (Abstand vom VCI-Träger zur Metalloberfläche) für einen definierten Zeitraum ein. Im Anschluss wurden die Metallproben betaut und somit korrosiv belastet. Nach Beendigung der Betauungsphase konnte die Korrosionsschutzwirkung anhand der Korrosionserscheinungen beurteilt und so eine Aussage hinsichtlich der benötigten Einwirkdauer in Abhängigkeit des Wirkradius von VCI-Produkten geprüft und untersucht werden können.

Im Gegensatz zu bisherigen Prüfmethoden, wie z.B. dem Test nach TL 8135-0002 (siehe Kapitel 2.1), lassen sich mit der Prüfeinrichtung nach BFSV, 4. Ansatz quantita-

Werden die Metallproben mit VCI-Packhilfsmitteln vor Korrosion geschützt, kann deren Schutzwirkung beurteilt und verschiedene VCI-Produkte reproduzierbar und unkompliziert miteinander verglichen werden. Bei einem Einsatz dieser Prüfmethode zur Prüfung der Korrosionsschutzwirkung von VCI-Produkten sollten jedoch noch weitere Reihenuntersuchungen erfolgen, um Faktoren die den gesamten Prüfprozess beeinflussen, weiter zu untersuchen, diese gegebenenfalls anzupassen und statistisch zu validieren.

Durch die nun vorliegende Möglichkeit, die benötigte Einwirkdauer zu prüfen, erhöht sich die Prozesssicherheit bei der Anwendung von VCI-Produkten. Damit verbunden ist auch eine größere Akzeptanz bei den Anwendern.

Ansätze hierzu, diese Prüfmethode zu etablieren, sind in der VCI-verarbeitenden Industrie vorhanden.
Literaturverzeichnis

15. **Lautner, Signe.** Zwischenberichte zum AIF-Forschungsvorhaben. Dresden : s.n., 2010.

Anhang A - Dokumentation der Metallproben aus den Vorversuchen zur Optimierung der Versuchsparameter

Tabelle 32: Dokumentierte Metallproben aus den Vorversuchen in Kapitel 5.2.4

<table>
<thead>
<tr>
<th>Vorversuch</th>
<th>Proben</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
Anhang B - Dokumentation der Metallproben aus Versuchsreihe 1 (Vorher - Nachher Bilder)

Tabelle 33: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 1 und 4 (Einwirkdauer 24 h; Wirkabstand: 15 cm)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nullprobe 1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCI-Probe 4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 34: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 2 und 5 (Einwirkdauer 24 h; Wirkabstand: 30 cm)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nullprobe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCI-Probe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachher</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 35: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 3 und 6
(Einwirkdauer 24 h; Wirkabstand: 60 cm)

<table>
<thead>
<tr>
<th></th>
<th>Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nullprobe</td>
<td></td>
</tr>
<tr>
<td>Vorher</td>
<td>3.1</td>
</tr>
<tr>
<td>Nachher</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td>VCI-Probe</td>
<td></td>
</tr>
<tr>
<td>Vorher</td>
<td>6.1</td>
</tr>
<tr>
<td>Nachher</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>6.3</td>
</tr>
</tbody>
</table>
Tabelle 36: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 10 und 13
(Einwirkdauer 8 h; Wirkabstand: 15 cm)

<table>
<thead>
<tr>
<th></th>
<th>Probe</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null-probe</td>
<td>10.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCI-Probe</td>
<td>13.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 37: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 11 und 14
(Einwirkdauer 8 h; Wirkabstand: 30 cm)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null-probe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCI-Probe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 38: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 12 und 15
(Einwirkdauer 8 h; Wirkabstand: 60 cm)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Vorher</th>
<th>Nachher</th>
<th>Vorher</th>
<th>Nachher</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
</table>
Tabelle 39: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 37 und 40
(Einwirkdauer 1 h; Wirkabstand: 15 cm)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Vorher</th>
<th>Nachher</th>
<th>Vorher</th>
<th>Nachher</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null-probe</td>
<td>37.1</td>
<td>37.2</td>
<td>37.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCI-Probe</td>
<td>40.1</td>
<td>40.2</td>
<td>40.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anhang B 95
Tabelle 40: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 38 und 41
(Einwirkdauer 1 h; Wirkabstand: 30 cm)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null-probe</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>38.1</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>38.2</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>38.3</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>VCI-Probe</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>41.1</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>41.2</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>41.3</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
</tbody>
</table>
Tabelle 41: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 39 und 42 (Einwirkdauer 1 h; Wirkabstand: 60 cm)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null-probe</td>
<td> </td>
<td></td>
</tr>
<tr>
<td>Vorher</td>
<td> </td>
<td></td>
</tr>
<tr>
<td>Nachher</td>
<td> </td>
<td></td>
</tr>
<tr>
<td>VCI-Probe</td>
<td> </td>
<td></td>
</tr>
<tr>
<td>Vorher</td>
<td> </td>
<td></td>
</tr>
<tr>
<td>Nachher</td>
<td> </td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 42: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 46 und 49 (Einwirkdauer 0,5 h; Wirkabstand: 15 cm)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Vorher</th>
<th>Nachher</th>
<th>Vorher</th>
<th>Nachher</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null-probe</td>
<td>46.1</td>
<td></td>
<td>46.2</td>
<td></td>
<td>46.3</td>
<td></td>
</tr>
<tr>
<td>Vorher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCI-Probe</td>
<td>49.1</td>
<td></td>
<td>49.2</td>
<td></td>
<td>49.3</td>
<td></td>
</tr>
<tr>
<td>Vorher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 43: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 47 und 50
(Einwirkdauer 0,5 h; Wirkabstand: 30 cm)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null-probe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCI-Probe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 44: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 48 und 51 (Einwirkdauer 0,5 h; Wirkabstand: 60 cm)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null-probe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCI-Probe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachher</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 45: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 55 und 58 (Einwirkdauer 0 h; Wirkabstand: 15 cm)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null-probe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCI-Probe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachher</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 46: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 56 und 59
(Einwirkdauer 0 h; Wirkabstand: 30 cm)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nullprobe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCI-Probe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 47: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 57 und 60
(Einwirkdauer 0 h; Wirkabstand: 60 cm)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nullprobe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCI-Probe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachher</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 48: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 61 und 62 (Wirkabstand: 15 cm)

<table>
<thead>
<tr>
<th>Nullprobe</th>
<th>Vorher</th>
<th>Nachher</th>
<th>Vorher</th>
<th>Nachher</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>61.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 49: Dokumentation der Metallproben aus Versuchsreihe 1; Versuche 63 (Wirkabstand: 30 cm) und 64 (Wirkabstand: 60 cm)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Vorher</th>
<th>Nachher</th>
<th>Vorher</th>
<th>Nachher</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null-probe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anhang C - Dokumentation der Metallproben aus Versuchsreihe 2 (Vorher - Nachher Bilder)

Tabelle 50: Dokumentation der Metallproben aus Versuchsreihe 2; Versuche 1 und 4 (Einwirkdauer 24 h; Wirkabstand: 15 cm)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null-probe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachher</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 51: Dokumentation der Metallproben aus Versuchsreihe 2; Versuche 2 und 5
(Einwirkdauer 24 h; Wirkabstand: 15 cm)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null-probe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>![image]</td>
<td>![image]</td>
</tr>
<tr>
<td>2.2</td>
<td>![image]</td>
<td>![image]</td>
</tr>
<tr>
<td>2.3</td>
<td>![image]</td>
<td>![image]</td>
</tr>
<tr>
<td>VCI-Probe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>![image]</td>
<td>![image]</td>
</tr>
<tr>
<td>5.2</td>
<td>![image]</td>
<td>![image]</td>
</tr>
<tr>
<td>5.3</td>
<td>![image]</td>
<td>![image]</td>
</tr>
</tbody>
</table>
Tabelle 52: Dokumentation der Metallproben aus Versuchsreihe 2; Versuche 3 und 6
(Einwirkdauer 24 h; Wirkabstand: 60 cm)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null-probe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCI-Probe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 53: Dokumentation der Metallproben aus Versuchsreihe 2; Versuche 7 und 10 (Einwirkdauer 48 h; Wirkabstand: 15 cm)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null-probe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCI-Probe</td>
<td>10.1</td>
<td>10.2</td>
</tr>
<tr>
<td>Vorher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probe</td>
<td>Vorher</td>
<td>Nachher</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Null-probe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCI-Probe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 54: Dokumentation der Metallproben aus Versuchsreihe 2; Versuche 8 und 11
(Einwirkdauer 48 h; Wirkabstand: 30 cm)
Tabelle 55: Dokumentation der Metallproben aus Versuchsreihe 2; Versuche 9 und 12
(Einwirkdauer 48 h; Wirkabstand: 60 cm)

<table>
<thead>
<tr>
<th>Probe</th>
<th>9.1</th>
<th>9.2</th>
<th>9.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nullprobe</td>
<td>Vorher</td>
<td>Nachher</td>
<td></td>
</tr>
<tr>
<td>VCI-Probe</td>
<td>Vorher</td>
<td>Nachher</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probe</th>
<th>12.1</th>
<th>12.2</th>
<th>12.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nullprobe</td>
<td>Vorher</td>
<td>Nachher</td>
<td></td>
</tr>
<tr>
<td>VCI-Probe</td>
<td>Vorher</td>
<td>Nachher</td>
<td></td>
</tr>
</tbody>
</table>
Anhang D - Dokumentation der Metallproben aus Versuchsreihe 3 (Vorher - Nachher Bilder)

Tabelle 56: Dokumentation der Metallproben aus Versuchsreihe 3; Versuche 1 und 4 (Einwirkdauer 24 h; Wirkabstand: 15 cm)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Vorher</th>
<th>Nachher</th>
<th>Vorher</th>
<th>Nachher</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null-probe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 57: Dokumentation der Metallproben aus Versuchsreihe 3; Versuche 2 und 5 (Einwirkdauer 24 h; Wirkabstand: 30 cm)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null-probe</td>
<td>2.1</td>
<td>2.2</td>
</tr>
<tr>
<td>Vorher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCI-Probe</td>
<td>5.1</td>
<td>5.2</td>
</tr>
<tr>
<td>Vorher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachher</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 58: Dokumentation der Metallproben aus Versuchsreihe 3; Versuche 3 und 6
(Einwirkdauer 24 h; Wirkabstand: 60 cm)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null-probe</td>
<td>3.1</td>
<td>3.2</td>
</tr>
<tr>
<td>Vorher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCI-Probe</td>
<td>6.1</td>
<td>6.2</td>
</tr>
<tr>
<td>Vorher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachher</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 59: Dokumentation der Metallproben aus Versuchsreihe 3; Versuche 7 und 10 (Einwirkdauer 48 h; Wirkabstand: 15 cm)

<table>
<thead>
<tr>
<th></th>
<th>Probe</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Null-probe</td>
<td></td>
<td>7.1</td>
<td>7.2</td>
<td>7.3</td>
</tr>
<tr>
<td>Vorher</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachher</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCI-Probe</td>
<td></td>
<td>10.1</td>
<td>10.2</td>
<td>10.3</td>
</tr>
<tr>
<td>Vorher</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachher</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 60: Dokumentation der Metallproben aus Versuchsreihe 3; Versuche 8 und 11
(Einwirkdauer 48 h; Wirkabstand: 30 cm)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null-probe</td>
<td>![8.1](null Probe 8.1) ![8.2](null Probe 8.2) ![8.3](null Probe 8.3)</td>
<td></td>
</tr>
<tr>
<td>Vorher</td>
<td>![8.1](Vorher Probe 8.1) ![8.2](Vorher Probe 8.2) ![8.3](Vorher Probe 8.3)</td>
<td></td>
</tr>
<tr>
<td>Nachher</td>
<td>![8.1](Nachher Probe 8.1) ![8.2](Nachher Probe 8.2) ![8.3](Nachher Probe 8.3)</td>
<td></td>
</tr>
<tr>
<td>VCI-Probe</td>
<td>![11.1](VCI Probe 11.1) ![11.2](VCI Probe 11.2) ![11.3](VCI Probe 11.3)</td>
<td></td>
</tr>
<tr>
<td>Vorher</td>
<td>![11.1](Vorher VCI Probe 11.1) ![11.2](Vorher VCI Probe 11.2) ![11.3](Vorher VCI Probe 11.3)</td>
<td></td>
</tr>
<tr>
<td>Nachher</td>
<td>![11.1](Nachher VCI Probe 11.1) ![11.2](Nachher VCI Probe 11.2) ![11.3](Nachher VCI Probe 11.3)</td>
<td></td>
</tr>
<tr>
<td>Probe</td>
<td>Vorher</td>
<td>Nachher</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Null-probe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCI-Probe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anhang E - Klimadiagramme aus Versuchsreihe 1

Abbildung 49: Klimaprofil Versuch 1 - 9 (Einwirkdauer 24 h)

Abbildung 50: Klimaprofil Versuche 10 - 18 (Einwirkdauer 8 h)
Abbildung 51: Klimaprofil Versuche 37 - 45 (Einwirkdauer 1 h)

Abbildung 52: Klimaprofil Versuche 46 - 54 (Einwirkdauer 0,5 h)
Abbildung 53: Klimaprofil Versuche 55 - 60 (Einwirkdauer 0 h)

Abbildung 54: Klimaprofil Versuche 61 - 64 (Nullproben)
Anhang F - Klimadiagramme aus Versuchsreihe 2

Abbildung 55: Klimaprofil Versuche 1 - 6 (Einwirkdauer 24 h)

Abbildung 56: Klimaprofil Versuche 7 - 12 (Einwirkdauer 48 h)
Anhang G - Klimadiagramme aus Versuchsreihe 3

Abbildung 57: Klimaprofil Versuche 1 - 6 (Einwirkdauer 24 h)

Abbildung 58: Klimaprofil Versuche 7 - 12 (Einwirkdauer 48 h)
Versuchsmaße

| Versuch | Probenummer | Abstand in cm | Eingriffzeit in h | Vollprobe | VCI-Probe | VCI-Bewertung | Probeneinteilung | VCI-Konzentration im Ausgangsmaterial in µg/m² | VCI-Anlagerungsraten an der Metalloberfläche in µg/m² | Verhältnis der VCI-Anlagerungsmenge zur VCI-Ausgangsmenge in % | Korrosionserscheinungen (KE) | Bewertung nach * | Ettets Aufreten nach 1 in min |
|---------|-------------|---------------|-------------------|-----------|-----------|--------------|----------------|---------------------------------|--------------------------------|--------------------------------|----------------------------|-----------------|----------------|-------------------|
| 1 | 1.1 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 30 |
| | 1.2 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | 0 | 7 | |
| | 1.3 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | 0 | 6 | |
| 2 | 2.1 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | 0 | 4 | |
| | 2.2 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | 0 | 4 | |
| | 2.3 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | 0 | 4 | |
| 3 | 3.1 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | 0 | 4 | |
| | 3.2 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | 0 | 4 | |
| | 3.3 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | 0 | 4 | |
| 4 | 4.1 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | 2 | 2 | |
| | 4.2 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | 2 | 2 | |
| | 4.3 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | 3 | 1 | |
| 5 | 5.1 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | 3 | 1 | |
| | 5.2 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | 3 | 0 | |
| | 5.3 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | 3 | 1 | |
| | 5.4 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | 2 | 2 | |
| 6 | 6.1 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | 3 | 1 | |
| | 6.2 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | 3 | 1 | |
| 7 | 7.1 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | k.K** | k.K. | |
| | 7.2 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | k.K. | k.K. | |
| | 7.3 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | k.K. | k.K. | |
| 8 | 8.1 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | k.K. | k.K. | |
| | 8.2 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | k.K. | k.K. | |
| | 8.3 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | k.K. | k.K. | |
| 9 | 9.1 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | k.K. | k.K. | |
| | 9.2 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | k.K. | k.K. | |
| | 9.3 | x | x | x | x | 0 | 0 | 0 | 0 | 0 | k.K. | k.K. | |

** k.K.: keine Kondensation der Metalloberflächen und daher keine Korrosionserscheinungen.
Abbildung 60: Versuchsmatrix Versuche 10 - 18 (Einwirkdauer 8 h)

<table>
<thead>
<tr>
<th>Versuch</th>
<th>Probennummer</th>
<th>Abstand in cm</th>
<th>Einwirkzeit in h</th>
<th>Nullprobe</th>
<th>VCI-Prüfung</th>
<th>Probenreinigung</th>
<th>VCI-Konzentration im Ausgangsmaterial in µg/m²</th>
<th>VCI-Aufkonzentrationen an der Metalloberfläche in µg/m²</th>
<th>Verhältnis der VCI-Aufkonzentrationen zur VCI-Ausgangsmenge in %</th>
<th>Korrosionerscheinungen (KE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10.1</td>
<td>15 30 60 0,5 1 2 4 8 24</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 7</td>
</tr>
<tr>
<td>10</td>
<td>10.2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 7</td>
</tr>
<tr>
<td>10</td>
<td>10.3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 7</td>
</tr>
<tr>
<td>11</td>
<td>11.1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 6</td>
</tr>
<tr>
<td>11</td>
<td>11.2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 5</td>
</tr>
<tr>
<td>11</td>
<td>11.3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 6</td>
</tr>
<tr>
<td>12</td>
<td>12.1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 6</td>
</tr>
<tr>
<td>12</td>
<td>12.2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 5</td>
</tr>
<tr>
<td>12</td>
<td>12.3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 5</td>
</tr>
<tr>
<td>13</td>
<td>13.1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3 1</td>
</tr>
<tr>
<td>13</td>
<td>13.2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3 0</td>
</tr>
<tr>
<td>13</td>
<td>13.3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3 0</td>
</tr>
<tr>
<td>14</td>
<td>14.1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3 0</td>
</tr>
<tr>
<td>14</td>
<td>14.2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3 0</td>
</tr>
<tr>
<td>14</td>
<td>14.3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2 2</td>
</tr>
<tr>
<td>15</td>
<td>15.1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3 1</td>
</tr>
<tr>
<td>15</td>
<td>15.2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3 0</td>
</tr>
<tr>
<td>15</td>
<td>15.3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3 0</td>
</tr>
<tr>
<td>16</td>
<td>16.1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>k.K.**</td>
</tr>
<tr>
<td>16</td>
<td>16.2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>k.K.</td>
</tr>
<tr>
<td>16</td>
<td>16.3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>k.K.</td>
</tr>
<tr>
<td>17</td>
<td>17.1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>k.K.</td>
</tr>
<tr>
<td>17</td>
<td>17.2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>k.K.</td>
</tr>
<tr>
<td>17</td>
<td>17.3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>k.K.</td>
</tr>
<tr>
<td>18</td>
<td>18.1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>k.K.</td>
</tr>
<tr>
<td>18</td>
<td>18.2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>k.K.</td>
</tr>
<tr>
<td>18</td>
<td>18.3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>k.K.</td>
</tr>
</tbody>
</table>

* Vollständige, ausgeprägte Korrosionerscheinungen entsprechen laut TL der Stufe 0 und laut BFSV der Stufe 7, keine sichtbaren KE entsprechen laut TL der Stufe 3 und laut BFSV der Stufe 7
** k.K.: keine Kondensation der Metalloberflächen und daher keine Korrosionerscheinungen
Abbildung 61: Versuchsmatrix Versuche 37 - 45 (Einwirkdauer 1 h)

<table>
<thead>
<tr>
<th>Versuch</th>
<th>Probennummer</th>
<th>Abstand in cm</th>
<th>Einwirkzeit in h</th>
<th>Näh.-probe</th>
<th>VCI-Prüfung</th>
<th>Probenreinigung</th>
<th>VCI-Konzentration im Ausgangsmaterial in µg/m²</th>
<th>VCI-Anlagerungsraten an der Metalloberfläche in µg/m²</th>
<th>Verhältnis der VCI-Anlagerungsmenge zur VCI-Ausgangsmenge in %</th>
<th>Korrosionerscheinungen (KE)</th>
<th>Bewertung nach *</th>
<th>Erstes Auftreten nach t in min</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>57.1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>38</td>
<td>57.2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>39</td>
<td>57.3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>40</td>
<td>58.1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>41</td>
<td>58.2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>42</td>
<td>58.3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>43</td>
<td>59.1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>44</td>
<td>59.2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>45</td>
<td>59.3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>46</td>
<td>59.4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>24</td>
</tr>
</tbody>
</table>

* Vollflächige, ausgeprägte Korrosionerscheinungen entsprechen laut TL der Stufe 0 und laut BFSV der Stufe 7, keine sichtbaren KE entsprechen laut TL der Stufe 3 und BFSV der Stufe 7

** k.K.: keine Kondensation der Metalloberflächen und daher keine Korrosionerscheinungen
<table>
<thead>
<tr>
<th>Versuch</th>
<th>Probenummer</th>
<th>Abstand in cm</th>
<th>Einwirkdauer in h</th>
<th>Nullprobe</th>
<th>VCI-Prophylaxe</th>
<th>VCI-Konzentration im Ausgangsmaterial in g/g²</th>
<th>VCI-Anlagernisrate an der Metalloberfläche in g/g²</th>
<th>VCI-Anlagernisrate zur VCI-Ausgangsmenge in %</th>
<th>Korrosionsercheinungen (KE)</th>
<th>Bewertung nach *</th>
<th>Erstes Auftreten nach t in min</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>46.1</td>
<td>15</td>
<td>0,5</td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>46.2</td>
<td>30</td>
<td></td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>46.3</td>
<td>60</td>
<td></td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>47</td>
<td>47.1</td>
<td>15</td>
<td>0,5</td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>47.2</td>
<td>30</td>
<td></td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>47.3</td>
<td>60</td>
<td></td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>48</td>
<td>48.1</td>
<td>15</td>
<td>0,5</td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>48.2</td>
<td>30</td>
<td></td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>48.3</td>
<td>60</td>
<td></td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>49</td>
<td>49.1</td>
<td>15</td>
<td>0,5</td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>49.2</td>
<td>30</td>
<td></td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>49.3</td>
<td>60</td>
<td></td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>50.1</td>
<td>15</td>
<td>0,5</td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50.2</td>
<td>30</td>
<td></td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50.3</td>
<td>60</td>
<td></td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>51</td>
<td>51.1</td>
<td>15</td>
<td>0,5</td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>51.2</td>
<td>30</td>
<td></td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>51.3</td>
<td>60</td>
<td></td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>52</td>
<td>52.1</td>
<td>15</td>
<td>0,5</td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>k.K.**</td>
<td>k.K.</td>
</tr>
<tr>
<td></td>
<td>52.2</td>
<td>30</td>
<td></td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>k.K.</td>
<td>k.K.</td>
</tr>
<tr>
<td></td>
<td>52.3</td>
<td>60</td>
<td></td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>k.K.</td>
<td>k.K.</td>
</tr>
<tr>
<td>53</td>
<td>53.1</td>
<td>15</td>
<td>0,5</td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>k.K.</td>
<td>k.K.</td>
</tr>
<tr>
<td></td>
<td>53.2</td>
<td>30</td>
<td></td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>k.K.</td>
<td>k.K.</td>
</tr>
<tr>
<td></td>
<td>53.3</td>
<td>60</td>
<td></td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>k.K.</td>
<td>k.K.</td>
</tr>
<tr>
<td>54</td>
<td>54.1</td>
<td>15</td>
<td>0,5</td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>k.K.</td>
<td>k.K.</td>
</tr>
<tr>
<td></td>
<td>54.2</td>
<td>30</td>
<td></td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>k.K.</td>
<td>k.K.</td>
</tr>
<tr>
<td></td>
<td>54.3</td>
<td>60</td>
<td></td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>k.K.</td>
<td>k.K.</td>
</tr>
</tbody>
</table>

* Vollflächen, ausgeprägte Korrosionerscheinungen entsprechen laut TL der Stufe 0 und laut BFSV der Stufe 7, keine sichtbaren KE entsprechen laut TL der Stufe 3 und laut BFSV der Stufe 7

** k.K.: keine Kondensation der Metalloberflächen und daher keine Korrosionerscheinungen
Anhang I - Versuchsmatrizen zur Versuchsreihe 2

Abbildung 63: Versuchsmatrix Versuche 1 - 6 (Einwirkdauer 24 h)

<table>
<thead>
<tr>
<th>Versuchsmatrix</th>
<th>Abstand cm</th>
<th>Einwirkdauer h</th>
<th>12</th>
<th>24</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versuchsnummer</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Vollkreuze zeigen signifikante Unterschiede gegenüber der Stufe 0 an. Die Stufe 0 und die BSV der Stufe 7, keine signifikanten Unterschiede.
Abbildung 64: Versuchsdaten Versuche 7 - 12 (Einwirkdauer 48 h)

<table>
<thead>
<tr>
<th>Versuch</th>
<th>Probenummer</th>
<th>Abstand in cm</th>
<th>Einwirkzeit in h</th>
<th>Nullprobe</th>
<th>VCI-Prüfung</th>
<th>Probenreinigung</th>
<th>VCI-Konzentration im Ausgangsmaterial in µg/m²</th>
<th>VCI-Anlagerungsraten an der Metalloberfläche in µg/m²</th>
<th>Verhältnis der VCI-Anlagerungsmenge zur VCI-Ausgangsmenge in %</th>
<th>Korrosionserscheinungen (KE)</th>
<th>Bewertung nach a</th>
<th>Erstes Auftreten nach 1 bis 30 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1</td>
<td>x</td>
<td>15</td>
<td>24</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>a</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>x</td>
<td>30</td>
<td>24</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>a</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>x</td>
<td>60</td>
<td>48</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>a</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>x</td>
<td>15</td>
<td>24</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>a</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>x</td>
<td>30</td>
<td>24</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>a</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>x</td>
<td>60</td>
<td>48</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>a</td>
</tr>
</tbody>
</table>

*a Vollflächige, ausgeprägte Korrosionserscheinungen entsprechen laut TL der Stufe 0 und laut BFSV der Stufe 7, keine sichtbaren KE entsprechen laut TL der Stufe 3 und laut BFSV der Stufe 7

** i.e.: keine Konzentration der Metalloberflächen und daher keine Korrosionserscheinungen
Anhang J - Versuchsmatrizen zur Versuchsreihe 3

Abbildung 65: Versuchszeitplan Versuche 1 - 6 (Einwirkdauer 24 h)
<table>
<thead>
<tr>
<th>Versuchsnr.</th>
<th>Abstand in cm</th>
<th>Einwirkdauer in h</th>
<th>Nullprobe</th>
<th>VCI-Prüfung</th>
<th>Probe von</th>
<th>VCI-Konzentration im Ausgangsmaterial in µg/m²</th>
<th>VCI-Anlagerungsrate an der Metalleoberfläche in µg/m²²</th>
<th>Verhältnis der VCI-Anlagerungsmenge zur VCI-Ausgangsmenge in %</th>
<th>Korrosionsscheinungen (Kf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* Vollflächige, ausgeprägte Korrosionsscheinungen entsprechen laut TL der Stufe 0 und laut BFSV der Stufe 7, keine sichtbaren KE entsprechen laut TL der Stufe 5 und laut BFSV der Stufe 7
** K.K.: keine Kondensation der Metalleoberflächen und daher keine Korrosionsscheinungen